#### Search for supersymmetric partners of 3rd generation quarks at CMS

Tom Cornelis

for the CMS Collaboration





December 12th, 2017 SUSY 2017

# Introduction: supersymmetric partners of 3rd generation quarks

This talk will focus on

- pair production of top squarks, mostly manifesting as  $t\bar{t} + p_{\rm T}^{\rm miss}$ 
  - ▶ 0ℓ: SUS-16-049, arXiv:1707.03316, JHEP10 (2017) 005
  - ▶ 1*ℓ*: SUS-16-051, arXiv:1706.04402, JHEP10 (2017) 019
  - ▶ 2ℓ: SUS-17-001, arXiv:1711.00752, Submitted to Phys. Rev. D
- pair production of bottom squarks
  - ► SUS-16-032, arXiv:1707.07274, Submitted to Phys. Lett. B
  - Analysis considers also stop pair production with  $\widetilde{t}_1 o c \widetilde{\chi}_1^0$  decays
- Use of simplified model spectra
  - Limited set of hypothetical particles and decay chains, describing a specific search channel
  - Minimal set of parameters (usually 2-4 mass parameters)
  - Generic description, results could be interpreted into other scenarios

#### Top squark pair production



- The simplified model **T2tt** describes top squark pair production
- The top squark  $(\tilde{t}_1)$  decays into a top (t) and the lightest neutralino  $(\tilde{\chi}_1^0)$



#### Top squark pair production



- The simplified model **T2tt** describes top squark pair production
- The top squark  $(\tilde{t}_1)$  decays into a top (t) and the lightest neutralino  $(\tilde{\chi}_1^0)$
- Same final state also in T2bW and T2bt, where one or both *t*<sub>1</sub> decays to a *b* quark and a chargino (*χ*<sup>+</sup><sub>1</sub>)



#### Top squark pair production



- In the **T8bb** $\ell\ell\nu\nu$  model, the  $\widetilde{\chi}^+_1$  decays through a slepton  $(\widetilde{\ell})$  to the  $\widetilde{\chi}^0_1$
- In this model, we have 100% branching ratio into dileptons, we can therefore only probe it in the  $2\ell$  analysis

- $\bullet\,$  Veto leptons, require two jets and  $p_{\rm T}^{\rm miss}>250\,\,{\rm GeV}$
- Top and W-boson reconstruction using multivariate methods



- Highly boosted top/W: merged into one jet, using jet substructure methonds on R = 0.8 jets
- $\blacktriangleright$  Low boost: "resolved top", using standard R=0.4 jets



### $\widetilde{t}_1\bar{\widetilde{t}}_1$ pair production (0 $\ell$ ): event categorization

- $\bullet\,$  Events with low and high  $\Delta m(\widetilde{t}_1,\widetilde{\chi}_1^0)$  are very different
- Introduce two categories, mainly based on

$$M_{\rm T}({\rm b}_{1,2}, {\it E}_{\rm T}) \equiv \begin{cases} 0, & N_{\rm b} = 0, \\ m_{\rm T}({\rm b}, {\it E}_{\rm T}), & N_{\rm b} = 1, \\ {\rm Min}[m_{\rm T}({\rm b}_1, {\it E}_{\rm T}), m_{\rm T}({\rm b}_2, {\it E}_{\rm T})], & N_{\rm b} \ge 2, \end{cases}$$

- Low  $\Delta m(\widetilde{t}_1,\widetilde{\chi}_1^0)$  category targets signals with compressed spectra
  - low  $m_T(b_{1,2}, \not\!\!\!E)$

 $\begin{array}{l} \textbf{High} \not E \text{ is caused by stop pair recoiling against ISR jet} \\ \textbf{ISR jet: large-} R \text{ jet with } p_{\mathrm{T}} > 200 \text{ GeV, fails } b\text{-tagging} \end{array}$ 

- High  $\Delta m(\widetilde{t}_1,\widetilde{\chi}^0_1)$  category targets signals with high mass splittings
  - high  $m_T(b_{1,2}, \not\!\!E)$
  - Extensive use of top and W-tagging algorithms

### $\widetilde{t}_1\overline{\widetilde{t}}_1$ pair production (0 $\ell$ ): signal regions

Main backgrounds:

- $t\bar{t}$  and W+jets with lost lepton
- Z+jets and  $t\bar{t}Z$  with  $Z \rightarrow \nu\nu$



+ more SR for 0 and 1 b-jet categories

### $\widetilde{t}_1 \bar{\widetilde{t}}_1$ pair production (0 $\ell$ ): results



## $\widetilde{t}_1\bar{\widetilde{t}}_1$ pair production (0 $\ell$ ): results





- Exactly one charged lepton
- $\bullet \ge 2$  jets
- ullet  $\geq$  1 b-tag
- $p_{\mathrm{T}}^{\mathrm{miss}} > 250 \; \mathrm{GeV}$
- $M_T > 150$  GeV, for  $t\bar{t}(1\ell)$ and W+jets, only  $p_T^{miss}$ source is neutrino so those backgrounds are bound by Wmass
- Minimum  $\Delta \phi(j, p_{\mathrm{T}}^{\mathrm{miss}}) > 0.8$

For compressed region (requiring 1 ISR jet to provide  $p_T^{miss}$ ):

- $\geq 5$  jets
- leading jet not b-tagged
- Minimum  $\Delta \phi(j, p_{\mathrm{T}}^{\mathrm{miss}}) > 0.5$
- $\Delta \phi(j,\ell) < 2$
- Lepton  $p_{\rm T} < 150~{\rm GeV}$

### $\widetilde{t}_1\bar{\widetilde{t}}_1$ pair production (1 $\ell$ ): signal regions

Categorization in

- $p_{\mathrm{T}}^{\mathrm{miss}}$  and number of jets
- $M_{\ell b}$  (invariant mass of the lepton and its closest b-jet in  $\Delta R$ )
- Modified topness (using  $\vec{p}_{T}^{miss} = \vec{p}_{T,W} + \vec{p}_{T,\nu}$ )

$$a_{\text{mod}} = \ln(\min S)$$
, with  $S(\vec{p}_{\text{W}}, p_z, v) = \frac{(m_{\text{W}}^2 - (p_v + p_\ell)^2)^2}{a_{\text{W}}^4} + \frac{(m_{\text{t}}^2 - (p_b + p_{\text{W}})^2)^2}{a_{\text{t}}^4}$ 



### $\widetilde{t}_1 \bar{\widetilde{t}}_1$ pair production (1 $\ell$ ): results





Pre-selections:

- Two oppositely-charged leptons
- Veto on additional loose leptons
- Two jets or more, with a least one b-tagged
- Veto on  $|m_{ll} m_Z| < 15$  GeV for same-flavour events
- Require  $p_{\rm T}^{\rm miss} > 80 \,\,{\rm GeV}$
- Additional requirements on  $p_{T}^{miss}/\sqrt{H_T}$  and  $\Delta \phi(j, p_{T}^{miss})$  in order to reject further DY events with jet mismeasurements

How to get rid of  $t\bar{t}$  background in  $2\ell$  analysis? • In  $W \to \ell\nu$  events, the missing momentum coincidences with the neutrino  $\Rightarrow$  from the transverse missing momentum  $\vec{p}_T^{miss}$  we can derive the transverse mass  $m_T$  which is bound by the W mass:  $m_T < m_W$ 



- In  $W \rightarrow \ell \nu$  events, the missing momentum coincidences with the neutrino  $\Rightarrow$  from the transverse missing momentum  $\vec{p}_T^{\rm miss}$  we can derive the transverse mass  $m_T$  which is bound by the W mass:  $m_T < m_W$
- In  $t\bar{t}$  events, we have **two** *W*-bosons, and if they both decay leptonically, **two** neutrinos



- In  $W \rightarrow \ell \nu$  events, the missing momentum coincidences with the neutrino  $\Rightarrow$  from the transverse missing momentum  $\vec{p}_T^{\rm miss}$  we can derive the transverse mass  $m_T$  which is bound by the W mass:  $m_T < m_W$
- In  $t\bar{t}$  events, we have **two** *W*-bosons, and if they both decay leptonically, **two** neutrinos
- Try out all possible splittings of  $\vec{p}_{\rm T}^{\rm miss}$  into  $\vec{p}_{\rm T1}^{\rm miss}$  and  $\vec{p}_{\rm T2}^{\rm miss}$



- In  $W \rightarrow \ell \nu$  events, the missing momentum coincidences with the neutrino  $\Rightarrow$  from the transverse missing momentum  $\vec{p}_{T}^{miss}$  we can derive the transverse mass  $m_{T}$  which is bound by the W mass:  $m_{T} < m_{W}$
- In  $t\bar{t}$  events, we have **two** *W*-bosons, and if they both decay leptonically, **two** neutrinos
- Try out all possible splittings of  $\vec{p}_{T}^{miss}$  into  $\vec{p}_{T1}^{miss}$  and  $\vec{p}_{T2}^{miss}$
- When both  $\vec{p}_{\text{T1}}^{\text{miss}}$  and  $\vec{p}_{\text{T2}}^{\text{miss}}$  coincidence with the neutrinos, then:  $\max \left[ M_T(\vec{p}_{\text{T1}}^{\ell 1}, \vec{p}_{\text{T1}}^{\text{miss}}), M_T(\vec{p}_{\text{T}}^{\ell 2}, \vec{p}_{\text{T2}}^{\text{miss}}) \right] < m_W$



- In  $W \rightarrow \ell \nu$  events, the missing momentum coincidences with the neutrino  $\Rightarrow$  from the transverse missing momentum  $\vec{p}_T^{\rm miss}$  we can derive the transverse mass  $m_T$  which is bound by the W mass:  $m_T < m_W$
- In  $t\bar{t}$  events, we have **two** *W*-bosons, and if they both decay leptonically, **two** neutrinos
- Try out all possible splittings of  $\vec{p}_{T}^{miss}$  into  $\vec{p}_{T1}^{miss}$  and  $\vec{p}_{T2}^{miss}$
- When both  $\vec{p}_{\text{T1}}^{\text{miss}}$  and  $\vec{p}_{\text{T2}}^{\text{miss}}$  coincidence with the neutrinos, then:  $\max \left[ M_T(\vec{p}_T^{\ell 1}, \vec{p}_{\text{T1}}^{\text{miss}}), M_T(\vec{p}_T^{\ell 2}, \vec{p}_{\text{T2}}^{\text{miss}}) \right] < m_W$
- So the minimization over all possible values,  $M_{T2}(\ell \ell)$ , is also bound by the W mass

$$M_{T2}(\ell\ell) = \min_{\vec{p}_{T1}^{\rm miss} + \vec{p}_{T2}^{\rm miss} = \vec{p}_{T}^{\rm miss}} \left( \max\left[ M_{T}(\vec{p}_{T}^{\ell 1}, \vec{p}_{T1}^{\rm miss}), M_{T}(\vec{p}_{T}^{\ell 2}, \vec{p}_{T2}^{\rm miss}) \right] \right)$$



- In  $W \rightarrow \ell \nu$  events, the missing momentum coincidences with the neutrino  $\Rightarrow$  from the transverse missing momentum  $\vec{p}_T^{\rm miss}$  we can derive the transverse mass  $m_T$  which is bound by the W mass:  $m_T < m_W$
- In tt
   events, we have two W-bosons, and if they both decay leptonically, two neutrinos
- Try out all possible splittings of  $\vec{p}_{T}^{miss}$  into  $\vec{p}_{T1}^{miss}$  and  $\vec{p}_{T2}^{miss}$
- When both  $\vec{p}_{T1}^{\text{miss}}$  and  $\vec{p}_{T2}^{\text{miss}}$  coincidence with the neutrinos, then:  $\max \left[ M_T(\vec{p}_T^{\ell 1}, \vec{p}_{T1}^{\text{miss}}), M_T(\vec{p}_T^{\ell 2}, \vec{p}_{T2}^{\text{miss}}) \right] < m_W$
- So the minimization over all possible values,  $M_{T2}(\ell \ell)$  , is also bound by the W mass
- Invisible particles, like dark matter would add additional  $\tilde{p}_{T}^{miss}$  to the event, and breaks the bound



• For both same-flavor and opposite-flavor dilepton events, we construct signal regions in categories of  $M_{T2}(\ell\ell)$ ,  $M_{T2}(b\ell b\ell)$  and  $p_T^{\text{miss}}$  variables



| $M_{\rm T2}(b\ell b\ell)$ (GeV) | $p_{\rm T}^{\rm miss}$ (GeV) | $100 < M_{\rm T2}(\ell \ell) < 140 {\rm GeV}$ | $140 < M_{T2}(\ell \ell) < 240 \text{GeV}$ | $M_{\rm T2}(\ell\ell) > 240{ m GeV}$ |
|---------------------------------|------------------------------|-----------------------------------------------|--------------------------------------------|--------------------------------------|
| 0–100                           | 80-200                       | SR0                                           | SR6                                        |                                      |
|                                 | >200                         | SR1                                           | SR7                                        |                                      |
| 100-200                         | 80-200                       | SR2                                           | SR8                                        |                                      |
|                                 | >200                         | SR3                                           | SR9                                        | SR12                                 |
| >200                            | 80-200                       | SR4                                           | SR10                                       |                                      |
|                                 | >200                         | SR5                                           | SR11                                       |                                      |

• For both same-flavor and opposite-flavor dilepton events, we construct signal regions in categories of  $M_{T2}(\ell\ell)$ ,  $M_{T2}(b\ell b\ell)$  and  $p_T^{\text{miss}}$  variables



| $M_{\rm T2}(b\ell b\ell)$ (GeV) | $p_{\rm T}^{\rm miss}$ (GeV) | $100 < M_{\rm T2}(\ell \ell) < 140 {\rm GeV}$ | $140 < M_{T2}(\ell \ell) < 240 \text{GeV}$ | $M_{\rm T2}(\ell\ell) > 240{ m GeV}$ |
|---------------------------------|------------------------------|-----------------------------------------------|--------------------------------------------|--------------------------------------|
| 0–100                           | 80-200                       | SR0                                           | SR6                                        |                                      |
|                                 | >200                         | SR1                                           | SR7                                        |                                      |
| 100-200                         | 80-200                       | SR2                                           | SR8                                        |                                      |
|                                 | >200                         | SR3                                           | SR9                                        | SR12                                 |
| >200                            | 80-200                       | SR4                                           | SR10                                       |                                      |
|                                 | >200                         | SR5                                           | SR11                                       |                                      |

### $\widetilde{t}_1\bar{\widetilde{t}}_1$ pair production (2 $\ell$ ): Use of control regions



Control regions for Drell-Yan and multibosons: same-flavor events with  $|m_{ll} - m_Z| < 15$  GeV and 0 b-jets



Control region for  $t\bar{t}Z$ :  $3\ell$  events

# $\widetilde{t}_1\overline{\widetilde{t}}_1$ pair production (2 $\ell$ ): Results: signal region yields

- Signal region are split up in same-flavor and opposite-flavor events
- Very good agreement in each of the 26 signal regions
- No significant excess in any of the bins



### $\widetilde{t_1}\overline{\widetilde{t}_1}$ pair production (2 $\ell$ ): Results



#### Combining $0\ell + 1\ell + 2\ell$

• The  $2\ell$  search can be statistically combined with the previous discussed all-jet and semileptonic searches



#### $\tilde{t}_1\bar{\tilde{t}}_1$ pair production (2 $\ell$ ): Results for $T8bb\ell\ell\nu\nu$



Intermediate mass parameters according to  $m_{\tilde{\ell}} = x \cdot (m_{\tilde{\chi}_1^+} - m_{\tilde{\chi}_1^0}) + m_{\tilde{\chi}_1^0}$ 

- high momentum for the  $\widetilde{\chi}^0_1$
- high  $p_T^{\text{miss}}$  and  $M_{T2}(\ell \ell)$  in the event
- therefore easy to exclude stop masses up to 1.35 TeV

• 
$$x = 0.5$$

excludes stop masses up to 1.2 TeV

• x = 0.05

- low momentum for the  $\tilde{\chi}_1^0$
- relatively low  $M_{T2}(\ell \ell)$
- excludes stop masses up to 400 GeV



#### Bottom and charm decays: search strategy

- Search for direct bottom squark pair or top squark pair production in final states with *b* and *c* jets
- Analysis divided in two categories
  - ▶ Non-compressed spectra for  $\widetilde{bb}$  pair production with  $\Delta m(\tilde{b}, \tilde{\chi}_1^0) > 100 \text{ GeV}$
  - ▶ Compressed spectra for  $\Delta m(\tilde{b}/\tilde{t},\tilde{\chi}_1^0) < 100 \text{ GeV}$





#### Non-compressed

- Two leading jets are *b*-tagged
- Search regions binned in  ${\cal H}_T$  and boosted-corrected contransverse mass  ${\cal M}_{CT}$  defined as

$$M_{CT}^2(j_1, j_2) = 2p_{\rm T}(j_1)p_{\rm T}(j_2)\left(1 + \cos\Delta\phi(j_1, j_2)\right)$$

which has endpoint at  $(m_{\widetilde{b}_1}^2-m_{\widetilde{\chi}_1^0}^2)/m_{\widetilde{b}_1}$ 

#### Bottom and charm decays: search strategy

- Search for direct bottom squark pair or top squark pair production in final states with *b* and *c* jets
- Analysis divided in two categories
  - ▶ Non-compressed spectra for  $\widetilde{bb}$  pair production with  $\Delta m(\tilde{b}, \tilde{\chi}_1^0) > 100 \text{ GeV}$
  - ▶ Compressed spectra for  $\Delta m(\tilde{b}/\tilde{t},\tilde{\chi}_1^0) < 100 \text{ GeV}$





#### Compressed

- Require ISR jet
- Binning in  $H_T$ ,  $N_b$ ,  $N_c$ ,  $N_{SV}$

#### Bottom and charm decays: result



23/24

- $\bullet$  Several third generation analyses performed using 2016 LHC data, amounting to 36  $fb^{-1}$
- Analysis techniques and selections improved (i.e. boosted objects, better use of transeverse mass variables  $M_{T2}(\ell\ell),\ldots$ ), resulting in a greater sensitivity
- Putting stronger limits on **top squark pair** and **bottom squark pair** production, reaching beyond 1 TeV for some models

## Backup slides

- Dark matter (DM) model where the DM candidate  $\chi$  interacts with Standard Model particles through a scalar mediator a or pseudoscalar mediator  $\phi$
- $\bullet\,$  Mediator coupling to quark  $\propto m_q,$  therefore favors coupling to top quark
- Same final state as in the top squark  $2\ell$  analysis



When interpreting the stop  $2\ell$  search in a dark matter model, we are able to put the **first limits** on dark matter production in the dileptonic  $t\bar{t}$  channel:



-----

27/24

For a scalar mediator, first analusis to exclude scalar mediator masses for  $m_{\chi}=1~{\rm GeV}$ 



#### Limits are also calculated for higher values of $m_{\chi}$

|                  |                    | Scalar                        |          | Pseudoscalar                  |          |
|------------------|--------------------|-------------------------------|----------|-------------------------------|----------|
| $m_{\chi}$ (GeV) | $m_{\phi/a}$ (GeV) | Expected                      | Observed | Expected                      | Observed |
| 1                | 10                 | $0.54^{+0.25}_{-0.16}$        | 0.70     | $1.01^{+0.49}_{-0.32}$        | 0.81     |
| 1                | 20                 | $0.56\substack{+0.26\\-0.17}$ | 0.53     | $1.02^{+0.49}_{-0.32}$        | 0.81     |
| 1                | 50                 | $0.67^{+0.32}_{-0.21}$        | 0.59     | $1.14^{+0.55}_{-0.36}$        | 0.91     |
| 1                | 100                | $1.04\substack{+0.48\\-0.32}$ | 0.90     | $1.33^{+0.65}_{-0.42}$        | 1.08     |
| 1                | 200                | $2.30^{+1.11}_{-0.72}$        | 1.87     | $2.02^{+1.01}_{-0.64}$        | 1.64     |
| 1                | 300                | $4.8^{+2.3}_{-1.5}$           | 3.8      | $3.7^{+1.8}_{-1.2}$           | 2.9      |
| 1                | 500                | $21.6^{+10.9}_{-6.9}$         | 17.4     | $21.0^{+10.4}_{-6.7}$         | 16.9     |
| 10               | 10                 | $18.8^{+8.8}_{-5.8}$          | 16.6     | $19.3^{+9.3}_{-6.1}$          | 15,3     |
| 10               | 15                 | $17.0^{+8.0}_{-5.2}$          | 13.8     | $15.8^{+7.6}_{-5.0}$          | 12.7     |
| 10               | 50                 | $0.72^{+0.33}_{-0.22}$        | 0.69     | $1.08\substack{+0.52\\-0.34}$ | 0.86     |
| 10               | 100                | $1.03\substack{+0.48\\-0.32}$ | 0.84     | $1.25^{+0.61}_{-0.39}$        | 0.98     |
| 50               | 10                 | $125^{+61}_{-39}$             | 102      | $72^{+36}_{-23}$              | 58       |
| 50               | 50                 | 104_33                        | 84       | 62+30                         | 49       |
| 50               | 95                 | 52+25                         | 43       | $20.3^{+10.0}_{-6.4}$         | 16.2     |
| 50               | 200                | $2.32^{+1.14}_{-0.73}$        | 1.86     | $2.05^{+1.02}_{-0.64}$        | 1.64     |
| 50               | 300                | $4.7^{+2.3}_{-1.5}$           | 3.8      | 3.7+1.9                       | 3.0      |
|                  |                    |                               |          |                               |          |