Search for Supersymmetry in Boosted Topologies at CMS SUSY 2017, Mumbai

simon Kurz on behalf of the CMS Collaboration

GEFENDERT VOM Bundesministeriun für Bildung und Forschung

Institut für Experimentalphysik, Universität Hamburg

Dec 12, 2017

- Focus on two (new!) searches that make use of boosted objects
 - Boosted Higgs CMS-PAS-SUS-17-006
 - (Boosted) Top quarks CMS-SUS-16-050, arXiv:1710.11188
- Magnitude of boost depends on mass splittings
- Similarities:
 - Strong production (largest cross-section)
 - Hadronic decay channels (jets and missing transverse energy (MET) in final state)

- Several other SUSY searches target decays with **resolved** *b*-jets
 - See e.g. talk <u>Inclusive search for SUSY</u> in hadronic final states at CMS
- → Explicitly targets boosted Higgs production
 - Take advantage of $H \to b \bar{b}$ branching fraction of $\approx 58\%$
 - High p_T Higgs bosons lead to collimated b-quarks which can be reconstructed as a single object
 - → Ensured by compressed mass splitting (e.g. $\Delta m(\tilde{g}, \tilde{\chi}_2^0) = 50 \text{ GeV}, m(\tilde{\chi}_1^0) = 1 \text{ GeV})$
 - Interpret results for models with H+H and H+Z, i.e. $\mathcal{B}(\tilde{\chi}_2^0 \to H) = 50\%$

Boosted Higgs: Analysis Setup

1) Baseline Selection

- Hadronic final states (also motivated by trigger)
 - Cut on $\textit{N}_{Jets} \geq 2, \textit{H}_{T} > 600\,{\rm GeV}, \textit{H}_{T}^{miss} > 200\,{\rm GeV}$
 - No isolated leptons or tracks
 - Reject if $H_{\rm T}^{\rm miss}$ is aligned with leading 4 jets ($\Delta \Phi$)
- Boosted objects
 - $E_{\rm T}^{\rm miss} > 300 \, {
 m GeV}$
 - At least 2 AK8 Higgs candidate jets with
 - $p_{\rm T} > 300 \, {\rm GeV}$
 - Pruned jet mass $m_{
 m J}$ within 50 GeV, 250 GeV

2) Signal: Higgs Tagging

- Use events with 1 or 2 Higgs tagged AK8 jets (N_{Higgs})
 - Pruned jet mass $m_{
 m J}$ within $85\,{
 m GeV}, 135\,{
 m GeV}$
 - Have a double-*b* tag (loose WP, \approx 75% signal eff)
 - link: CMS-PAS-BTV-15-002

Jet Pruning

- Recluster jet
- Remove soft, large angle particles from the jet (often UE, PU)
- \rightarrow Improves mass resolution

$b\bar{b}$ Tagging

- Based on MVA
- Compatibility of an AK8 jet coming from decay of two b-quarks
- Combines information from secondary vertices, tracks, τ -axes (N-subjettines axes)
- Explicitly doesn't use jet mass m_J
- → More information in backup

Boosted Higgs: Analysis Design

- Analysis designed as a counting experiment
 - $3 \times 2 = 6$ search regions $(E_{\rm T}^{\rm miss} \times N_{\rm Higgs})$
- Plot: Mass m_J of leading jet $(N_{Higgs} = 1, 2)$
 - \rightarrow Signal can be seen as a resonance in m_{\perp}

Boosted Higgs: Background Estimation

- Estimate the background using an 'ABCD' method:
 - Use *m*_J sideband and un-bb-tagged regions (background dominated) to extrapolate to signal region *A*_{1,2}
 - Measure $\kappa_{1,2}$ in MC to correct for correlations of the jet mass and the bb-tagging variables
 - \rightarrow Derive data/MC scalefactors (SFs) in validation regions to correct for relative composition of BGs
 - low-ΔΦ (QCD)
 - single-lepton ($t\bar{t}, W$ +jets)
 - single-photon ($Z(\nu\nu)$ +jets)
 - $\rightarrow \mbox{ SFs validated in signal sideband regions }$
 - Validity of ABCD method tested in data in the validation regions

$$\boldsymbol{A}_{1,2} = \boldsymbol{B}_{1,2} \cdot \frac{\boldsymbol{C}}{\boldsymbol{D}} \cdot \boldsymbol{\kappa}_{1,2}$$

 Observed event yields are in statistical agreement with data-driven prediction of SM backgrounds

\rightarrow No evidence for SUSY

- Compute upper limits on the gluino pair-production cross section
 - Contributions to sideband regions from signal modeled in likelihood fit
 - T5HH: exclude $m_{\tilde{g}}$ up to 2010 GeV
 - T5ZH: exclude m_{g̃} up to 1825 GeV

(with the assumption of $\Delta m(\tilde{g}, \tilde{\chi}_2^0) =$ 50 GeV, $m(\tilde{\chi}_1^0) = 1$ GeV)

N _{Higgs}	$p_{\rm T}^{\rm miss}$ (GeV)	κ	Predicted	Observed
1	300 - 500	0.98 ± 0.11	17.68 ± 3.85	15
1	500 - 700	0.86 ± 0.16	3.44 ± 1.47	2
1	> 700	0.86 ± 0.17	0.61 ± 0.45	1
2	300 - 500	0.73 ± 0.14	1.52 ± 0.57	1
2	500 - 700	$\textbf{0.43} \pm \textbf{0.12}$	$0.09\substack{+0.08\\-0.08}$	0
2	> 700	0.62 ± 0.30	$0.09\substack{+0.11 \\ -0.09}$	0

(Boosted) Top: Introduction & Analysis Setup

All-hadronic analysis using top-tagging

- Jets+E^{miss} final states
 - $\textit{N}_{Jets} \geq$ 4, $\textit{E}_{T}^{miss} > 250\,{\rm GeV}, \,\textit{H}_{T} > 300\,{\rm GeV}, \,\textit{N}_{b} \geq 1$
 - Lepton and track vetoes
 - $\Delta \Phi(\text{jet}, E_T^{\text{miss}})$ -cut on leading three jets
- Top reconstruction
 - $N_t \geq 1$ (customized top tagger)
 - $M_{T2}>200\,{
 m GeV}$
- Targeting large variety of signal models
 - $\rightarrow~84$ search regions binned in $\textit{N}_{t},\textit{N}_{b},\textit{E}_{T}^{miss},\textit{M}_{T2}/\textit{H}_{T}$
 - Also define **10 aggregate search regions** (simplifies re-interpretation etc.)

• Customized top-tagging algorithm

- Designed for a good efficiency for a large range of t -quark $p_{\rm T}$ (boost depends on signal)
- Uses AK4 and AK8 jets since *t*-jet can be **resolved** or **partially/fully merged**

(Boosted) Top: Top Tagger (Categories)

- Tag fully merged tops
 - **Standard** PUPPI AK8 **boosted top** (loose working point)
- Tag partially merged tops (merged W-jet)
 - Standard PUPPI AK8 boosted W (loose working point)
 - Combine with nearby AK4 jet
 - Require mass to be consistent with m(t) and ratio consistent with m(W)/m(t)

Solved tops (New!)

- Use all combinations of 3 AK4 jets (no more than 1 b-jet)
- Train MVA on jet properties (*p*_T, mass of tri-jet and di-jet system, angular separation, CSV, QGL, etc.)
- Optimized cut on MVA based on full limit-setting procedure

PUPPI (pileup per particle identification)

 Each particle is weighted by the probability to originate from the primary vertex before jet clustering

- Left: Performance of "Tight" working point in signal MC (T2tt)
 - High efficiency for a large range of *t*-quark *p*_T
 - Breakdown in the categories reveals important contributions
- **Right**: Misidentification rate of the top tagger in MC $(Z \rightarrow \nu \nu)$
 - Almost constant with an average of $\approx 20\%$
 - Huge improvement compared to previous (cut-based) version of tagger

(Boosted) Top: Background Estimation

- Most important backgrounds: lost lepton and hadronic tau, as well as Z invisible
 - $figure t\overline{t}$, W + jets: Data-driven approach using translation factors
 - Derive $TF = N_{SR}^{MC} / N_{CR}^{MC}$ in MC (data/MC SFs applied)
 - Then estimate using data CR: $N_{SR} = TF \cdot N_{CR}$
 - Use data sideband to validate approach [top plot]
 - **2** $Z(\nu\nu)$ +jets: Central value from MC with data/MC corrections
 - Derive SF(N_{Jets}) in "loose" ($DY \rightarrow \mu\mu$) CR and apply on $(Z \rightarrow \nu \nu)$ MC [bottom plot, after application of SF]
 - Then adjust normalization in "tight" CR
 - Derive shape uncertainty based on "loose" CR after all corrections have been applied
- \rightarrow Details on QCD, *ttZ* background estimation in backup

1000

1200 p_miss [GeV]

11/14

600 800

400

10⁻¹ Data/MC

(Boosted) Top: Results

No statistically significant deviation between data and SM background observed

 \rightarrow Results of aggregated Search Regions in backup!

(Boosted) Top: Exclusion Limits [more in backup]

T2tt

T1tttt

Summary

- \bullet Highlighted results from two (brand-new!) analyses with boosted final states with $35.9\,{\rm fb}^{-1}$ data collected by CMS
 - $\bullet\,$ Both searches for Supersymmetry are performed in jets+MET final state, plus
 - **0** boosted Higgs (CMS-PAS-SUS-17-006, paper will be available soon)
 - (boosted) top quark (link: arXiv:1710.11188)
 - $\rightarrow\,$ No evidence for physics beyond the Standard Model found
- Additional material for interpretation: link (boosted top)

Backup

Boosted Higgs: Details on Background Estimation

• Prediction can be done in data using the signal trigger:

$$A_{1,2} = B_{1,2} \cdot rac{C}{D} \cdot \kappa_{1,2}$$

- Based on assumption that the jet mass and the bb-tagging variables are un-correlated
 - But: ratios $(\frac{B_1}{D}, \frac{A_1}{C}, ...)$ are sample dependent
 - $\begin{array}{l} \rightarrow \mbox{ Derive correction for the effect:} \\ \kappa_{1,2} = {\cal A}_{1,2}^{\rm MC} / \left({\cal B}_{1,2}^{\rm MC} \cdot \frac{{\cal C}^{\rm MC}}{{\cal D}^{\rm MC}} \right) \end{array}$
 - κ_{1,2} calculated inclusively in all BG MC samples (but independently for all 6 SRs)
- Derive data/MC SFs in validation regions to correct for relative composition of BGs
 - Loosen cut on $E_{\rm T}^{\rm miss}$ or $\Delta\Phi$ in case of low statistics
 - Generally no $E_{\rm T}^{\rm miss}$ dependence observed so calculated inclusively
 - Single lepton validation region: derive SF as a function of E_T^{miss} and assign E_T^{miss} shape uncertainty in case of low statistics

(Boosted) Top: Background Estimation

- $t\bar{t}$, W +jets: Data-driven approach using translation factors
 - Derive $TF = N_{SR}^{MC} / N_{CR}^{MC}$ in MC (data/MC SFs applied)
 - Then estimate using data CR: $\textit{N}_{SR} = \mathrm{TF} \cdot \textit{N}_{CR}$
 - Use data sideband to validate approach
- $\frac{Z(\nu\nu) + jets:}{corrections}$ Central value from MC with data/MC
 - Derive SF($N_{\rm Jets}$) in "loose" ($DY \rightarrow \mu\mu$) CR and apply on ($Z \rightarrow \nu\nu$) MC
 - Then adjust normalization based on "tight" DY CR
 - Derive shape uncertainty based on "loose" CR after all corrections have been applied
- **QCD**: Data-driven approach using translation factors
 - Measure $TF = N_{QCD}^{\Delta\Phi}/N_{QCD}^{\overline{\Delta\Phi}}$ in data in low E_T^{miss} sideband region
 - Use MC to extrapolate to SR
 - Derive systematic uncertainty based on MC closure test
- IttZ: MC, validated in three-lepton CR

(Boosted) Top: Results (Aggregated Search Regions)

Region	$N_{\rm t}$	$N_{\rm b}$	m _{T2} [GeV]	p_T^{miss} [GeV]	Motivation
1	≥ 1	≥ 1	≥ 200	≥ 250	Events satisfying selection criteria
2	≥ 2	≥ 2	≥ 200	≥ 250	Events with $N_t \ge 2$ and $N_b \ge 2$
3	≥ 3	≥ 1	≥ 200	≥ 250	Events with $N_t \ge 3$ and $N_b \ge 1$
4	≥ 3	≥ 3	≥ 200	≥ 250	T5tttt; small $\Delta m(\tilde{g}, \tilde{\chi}_1^0)$ and $m_{\tilde{\chi}_1^0} < m_t$
5	≥ 2	≥ 1	≥ 200	≥ 400	T2tt; small $\Delta m(\tilde{t}, \tilde{\chi}_1^0)$
6	≥ 1	≥ 2	≥ 600	≥ 400	T2tt; large $\Delta m(\tilde{t}, \tilde{\chi}_1^0)$
Region	$N_{\rm t}$	$N_{\rm b}$	H _T [GeV]	p _T ^{miss} [GeV]	Motivation
7	≥ 1	≥ 2	≥ 1400	≥ 500	T1ttbb & T5ttcc; large $\Delta m(\tilde{g}, \tilde{\chi}_1^0)$
8	≥ 2	≥ 3	≥ 600	\geq 350	T1tttt; small $\Delta m(\tilde{g}, \tilde{\chi}_1^0)$
9	≥ 2	≥ 3	\geq 300	≥ 500	T1/T5tttt & T1ttbb; intermediate $\Delta m(\tilde{g}, \tilde{\chi}_1^0)$
10	≥ 2	≥ 3	≥ 1300	\geq 500	T1/T5tttt; large $\Delta m(\tilde{g}, \tilde{\chi}_1^0)$

(Boosted) Top: Exclusion Limits

T1ttbb

- Gluino decays via an off-shell top or bottom squark
 - $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0(25\%)$
 - $ilde{g}
 ightarrow b ar{t} ilde{\chi}_1^+$ (or charge conjugate,50%)
 - $ilde{g}
 ightarrow b ar{b} ilde{\chi}_1^0(25\%)$
- ${\tilde \chi}_1^+$ decays to LSP and off-shell W
- Provides sensitivity to mixed states of top and bottom quarks

(Boosted) Top: Exclusion Limits

T5tttt

- Provides sensitivity to a region that is difficult to probe with the T2tt model
 - Signal similar to $t\overline{t}$ events
- Area at the bottom is excluded due to high signal contamination
 - Statistical treatment of signal contamination becomes unreliable

(Boosted) Top: Exclusion Limits

T5ttcc

- Top squark decays to a charm quark and the LSP.
 - $\Delta m(\bar{t},\tilde{\chi}_1^0)=20\,{
 m GeV}$
- Provides sensitivity to scenarios in which the top squark is kinematically unable to decay to an on-shell top quark
 - Dominant decay mode of top squark in this case

(Boosted) Top: Search Binning

CMS-PAS-BTV-15-002

CMS-PAS-BTV-15-002

CMS-PAS-BTV-15-002

