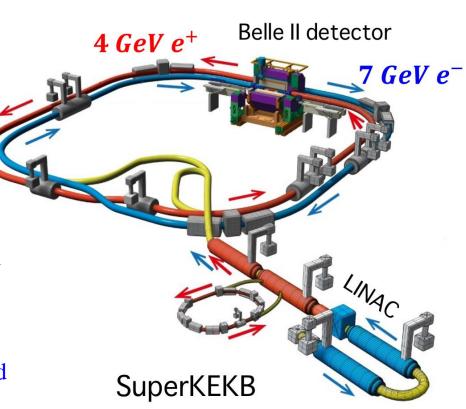
Belle II SVD operation, performance and upgrade activities

Sagar Hazra

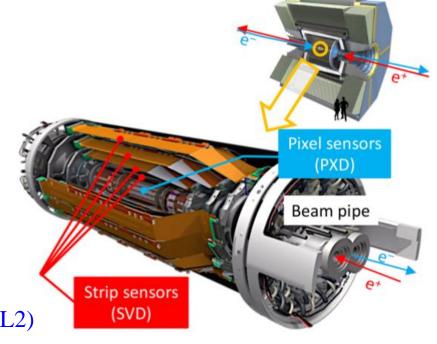
On behalf of TIFR-Belle II group

May 5, 2022 @ DHEP annual review 2022

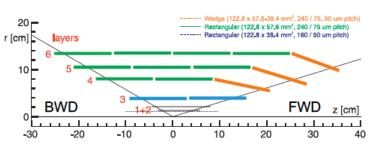


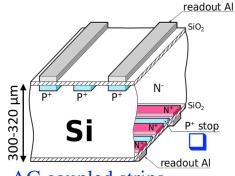
Outline of the talk

- □ SuperKEKB and Belle II
- □ Silicon-strip vertex detector (SVD) highlights
- Operational experience
- Performance
- Upgrade activities
- ☐ Summary and outlook


SuperKEKB and Belle II

- ☐ Second-generation flavor factory
 - Asymmetric e^+e^- collisions at $\Upsilon(4S)$ resonance $\Rightarrow 10.58$ GeV
 - Target \mathcal{L}_{int} : 50 ab⁻¹ and \mathcal{L}_{peak} : $60 \times 10^{35} \text{cm}^{-2} \text{s}^{-1} (30 \times \text{KEKB})$
 - \triangleright Current record: 3.8 \times 10³⁵cm⁻²s⁻¹
- ☐ Belle II Detector
 - Search for new sources of CP violation and probe physics beyond the standard model at the intensity frontier
 - Physics requirements call for precise vertexing, low-momentum tracking and particle identification (PID)
- ☐ Vertex Detector is a key component in this pursuit




The Vertex Detector

- Physics requirements:
 - Better vertexing resolution than Belle to compensate reduced boost \Rightarrow improved resolution, and lower material budget (0.7% X_0 per layer)
 - Able to operate in high beam background
 ⇒ hit rate: 3 MHz/cm²@ SVD layer-3
 - Radiation hard ⇒ 0.2 Mrad/yr @ SVD layer-3
- ☐ Pixel Detector (PXD)
 - ➤ DEPFET pixel sensors: Layer 1-2 (partial L2)
- ☐ Silicon-strip Vertex Detector (SVD)
 - Double-sided Si strip sensors: Layer 3-6
 - \triangleright Standalone tracking and PID for low p_T charged particles
 - Extrapolate tracks to PXD (Region of interest)

SVD in one slide

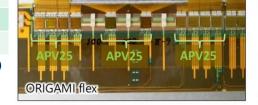
Origami 'chip-on-sensor' concept⇒ small capacitive noise

AC coupled strips

 $V_{\rm dep}$: 2–60 V

*V*_{op}: 100 V

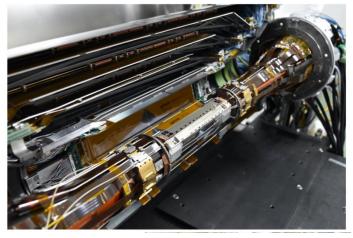
Small Large Trapezoidal
172 sensors 40 125 125 126 [mn

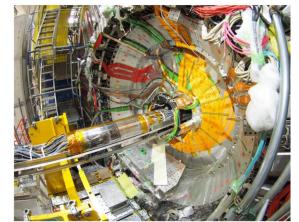

	x14	x120	x38
	Small	Large	Trapezoidal
# of p-strips*	768	768	768
p-strip pitch*	50 µm	75 µm	50-75 μm
# of n-strips*	768	512	512
n-strip pitch*	160 µm	240 µm	240 µm
thickness	320 µm	320 µm	300 µm
manufacturer	HF	PK	Micron

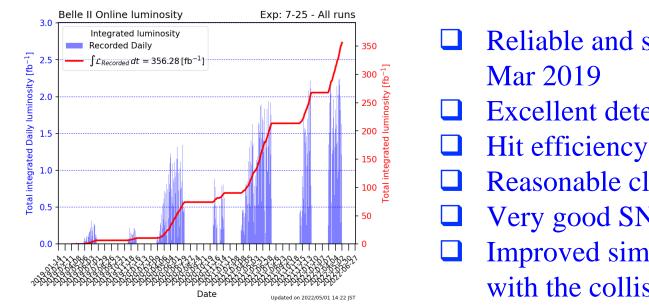
*readout strips - one	floating strip	on both	sides
-----------------------	----------------	---------	-------

Layer	Ladder	Institute
3	7(+1)	Melbourne
4	10(+2)	TIFR Mumbai
5	12(+3)	HEPHY Vienna
6	16(+4)	Kavli IPMU

INFN Pisa: Layer 4-6 forward (FWD) and backward (BWD) modules



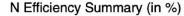

Various milestones

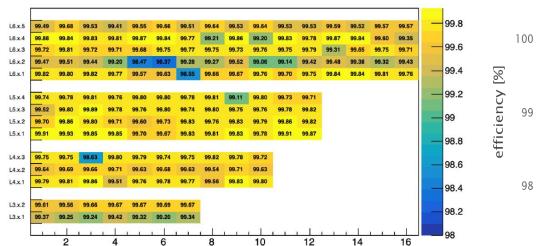


- ☐ 09-2008: Origami concept established
- □ 05-2015: First completed SVD ladder
- □ 02/07-2018: 1st/2nd "half shell" assembled
- ☐ 11-2018: Installed to Belle II
- □ 03-2019: 1st collision data with full VXD
- □ 01-2022: SVD paper submitted to JINST

arXiv:2201.09824

Operational experience in brief

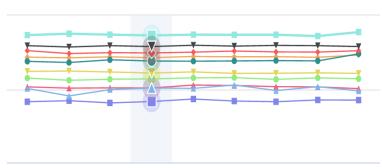



- Reliable and smooth operation since Mar 2019
 - ☐ Excellent detector performance
- \blacksquare Hit efficiency > 99% in most sensors
- ☐ Reasonable cluster charge distribution
- ☐ Very good SNR in the range 13-30
- ☐ Improved simulation better agrees with the collision data

- ☐ Despite the covid 19 pandemic, Belle II continues to take data.
- Our group has been very active in taking remote operation and performance monitering shift (22% of the total load)

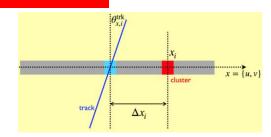
Hit efficiency

ladder number

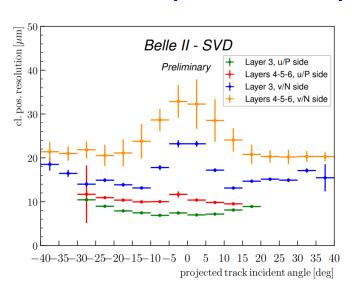


 \supset > 99% for majority of sensors

Average Efficiency per layer



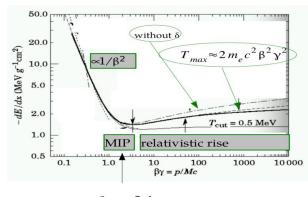
2020 data

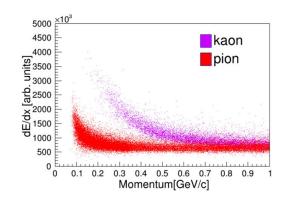

layer	$\varepsilon(u/P)(\%)$	$\varepsilon(v/N)(\%)$
3	99.83 ± 0.01	99.48 ± 0.03
4	99.69 ± 0.03	99.68 ± 0.03
5	99.66 ± 0.03	99.77 ± 0.04
6	99.31 ± 0.08	99.58 ± 0.06

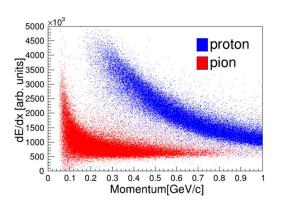
Cluster position resolution

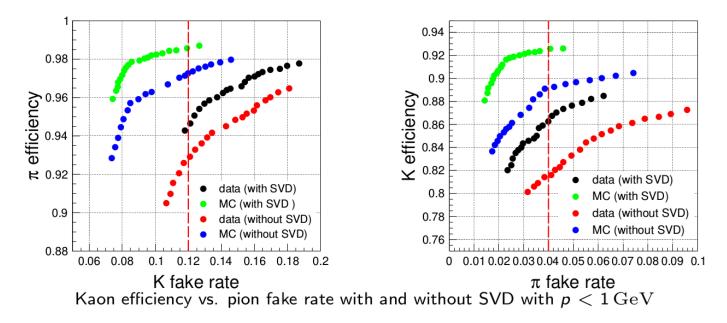
- \Box Measured in e⁺e[−] → μ⁺μ[−] data
- Estimated from the residual of cluster position with respect to the track

- Position resolution in agreement with expectations from strip pitch
- Work continues to further improvement, especially in the u/P side




PID using SVD


Low p_T charged particles are mostly unable to reach CDC


- Exploit the specific ionization (dE/dx) information of SVD to identify various charged particles, especially pions vs. kaons
- Use control samples of kinematically identified $D^{*+} \to D^0(K^-\pi^+)\pi_S^+$ and $\Lambda \to p\pi^-$ decays

PID performance

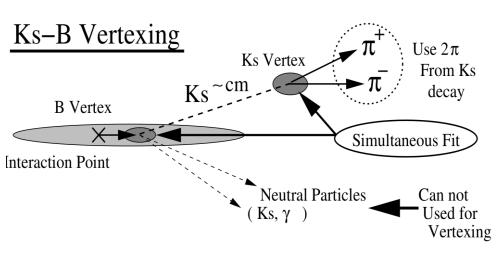


- Addition of SVD dE/dx information leads to significant improvement in the PID performance
- Data-MC difference arises mostly due to a suboptimal simulation of the cluster energy ⇒ work in progress

Physics performance

Excellent vertex resolution!

- □ Measured impact parameter resolut of $14.1 \pm 0.1 \mu m$
- D lifetime measurement
- Vertex determination plays a key role in this measurement
- Belle II time resolution is better than Belle by factor about two
- World's most precise D lifetime measurements!



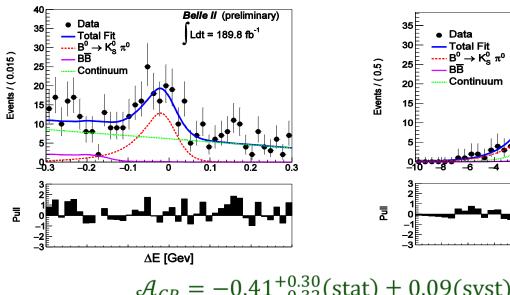
$$\tau(D^0) = 410.5 \pm 1.1 \,(\text{stat}) \pm 0.8 \,(\text{syst}) \,\text{fs}$$

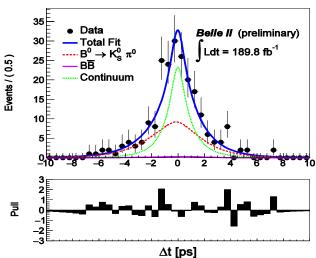
 $\tau(D^+) = 1030.4 \pm 4.7 \,(\text{stat}) \pm 3.1 \,(\text{syst}) \,\text{fs}$

Phys Rev Lett 127, 211801 (2021)

Something closer to my heart

□ Perform a time-dependent study to measure the branching fraction and direct CP asymmetry for $B^0 \rightarrow K_S^0 \Pi^0$ decays.

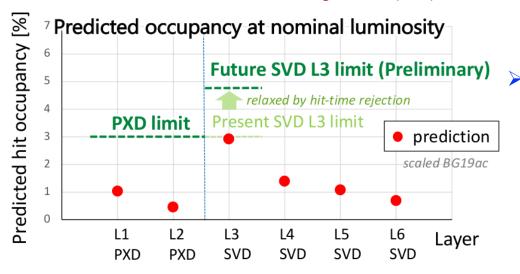

Challenge: No primary charge tracks to acilitate B⁰


□ B⁰ vertex position is determined by projecting the K_S⁰ trajectory to the interaction region.

□ Excellent/ precise K_S⁰ vertexing in SVD.

Results on B and A_{CP} for $B^0 \rightarrow K_S^0 \sqcap^0$

□ 4D fit comprising M_{bc} , ΔE, continuum suppression output and Δt □ Use $B^0 \Rightarrow J/\psi$ ($\mu^+ \mu^-$) K_S^0 to calibrate the signal Δt shape



 $\mathcal{A}_{CP} = -0.41^{+0.30}_{-0.32}(\text{stat}) \pm 0.09(\text{syst})$ $\mathcal{B} = [11.0 \pm 1.2(\text{stat}) \pm 1.0(\text{syst})] \times 10^{-6}$

Presented at Moriond 2022 conference

Limits on current VXD and upgrade

Tolerance for beam-induced background (BG)

Room to improve vertex resolution with better hit position resolution

- Several technology options under investigation by R &D subgroups
 - Thin fine pitch sensor
 - Upgraded DEPFET sensor
 - SOI pixel sensor
 - CMOS pixel sensor
- Predicted BG within limits, BUT without enough safety margin

TIFR is a part of SVD-TFP upgrade project.

Time scale of the VXD upgrade project

Occasion of new VXD installation:

Timeframe expected to 2026-27 but still with uncertainty

- R& D activities will access the options
 - Which concept bring best performance?
 - -Which technologies fit the requirements?
 - -Which technology fit timeframe of installation?

Development of a test-bench for silicon strip detector present in Rahul's poster.

Summary and outlook

- SVD has been successfully recording data since Mar 2019 ⇒ smooth and reliable operation
- Our group is a key player in the remote operation and monitoring of SVD.
- Very good and stable performance ⇒ there is still room for improvement,
 especially in tuning of simulation
- Addition of SVD dE/dx information improves the particle identification in the low momentum region.
- ☐ Upgrade of Belle II VXD is desirable.

Thank you