AstroSat CZTI studies of Gamma Ray Bursts

Varun Bhalerao INSPIRE Faculty Fellow, IUCAA (varunb@iucaa.in)

Detecting GRBs

Localisation

Polarimetry

AstroSat CZTI studies of Gamma Ray Bursts

ASTROSAT

A Satellite Mission for Multi-wavelength Astronomy Indian Space Research Organisation

ASTROSAT

A multi-wavelength satellite

ASTROSAT A Satellite Ultran / 10 Etulti-waveleng to strong

Indian Space Research Organisation

Telescope

Large Area X-ray Proportional Counter

SXT: Soft X-ray Telescope

CZTI:
 Cadmium Zinc
 Telluride Imager

SSM: Scanning Sky Monitor

Cadmium Zinc Telluride Imager

Vital statistics

- Energy range:
- Effective area:
- Field of view:
- Angular resolution:
- Energy resolution:

20 to >200 keV 487 cm² 4.6° x 4.6° 17' 11% at 60 keV

Csl (veto) detector: 100 to 500 keV
 » Effective area ~1000 cm²

Detecting GRBs

CZTI field of view

Primary FoV:4.5 degrees (FWHM)

Overall sensitivity:>29% of the sky

Median effective area at 180 keV
= 190 sq cm
≈ 40% of peak

AstroSat CZTI studies of Gamma Ray Bursts

GRB151006A

56 GRB detections

Coverage for GW151226

CZTI effective area at 180 keV

AstroSat CZTI studies of Gamma Ray Bursts

GRB localisation

GRB170501A

Use satellite as mask

Finer details: GRB spectrum

Even more details?

- Scattering from satellite elements
- GEANT4 simulations
- Catch Sujay Mate / Mithun NPS / Aarthy

GRB polarisation

Polarimetry principle

Image: Tsubame mission team

GRB polarisation

20

AstroSat CZTI studies of Gamma Ray Bursts

\mathbf{i}
\square
T
(
$(\cap$
\square
\sum
\bigcirc
$\prod_{i=1}^{n}$

GRB	Fluence (10 ⁻⁵ erg/cm ²)	Energy (keV)	Pol %
151006	1.15	100-300	90
160106	4.526	100-275	54
160131	32.6	100-290	70
160325	1.91	100-350	38
160607	4.12	100-400	_
160509	29.0	102-380	95
160623	66	100-300	19
160703	2.7	100-225	_
160802	10.4	130-225	72
160821	1.0	100-250	57
160910	8.41	100-330	81

Crab polarization

Measure with Compton scattering (double events)

Clear detection in 40-50 ks

Crab pulsar polarization

Detecting GRBs

Localisation

Polarimetry

AstroSat CZTI studies of Gamma Ray Bursts

25

Launch: 28 September 2015

