Prompt Signals and Displaced Vertices in Sparticle Searches

(for Next-to-Minimal Gauge Mediated Supersymmetric Models)

Based on EPJC (2016) 76:482

Nishita Desai; LUPM, Montpellier

Collaborators: B. Allanach, M. Badziak, G. Cottin, C. Hugonie, R. Ziegler

SUSY 2017; TIFR, Mumbai

NMSSM: Long Lived Neutral Particles

- Supersymmetry with extra singlino & gauge mediation
 - ✓ Predicts 125 GeV higgs mass
 - ✓ Doesn't violate low-scale observables
 - ✓ Predicts high masses of strongly charged SUSY partners
- Predicts a pseudo-scalar boson of mass ~ 30 GeV; all chains end in producing this boson
- This boson has a lifetime ~ 1 mm (due to boost, decays after traveling ~100 mm in the detector)
- 1. Can ordinary SUSY searches find this scenario?
- 2. What are the effects of the extra pseudo scalar

Spectrum of model

Recasting SUSY jets+MET search

ATLAS coll. EPJC (2016)

\sqrt{s}	8 TeV		13 TeV	
Signal region	4jt-8	6jt-8	4jt-13	6jt-13
$p_T^{\text{miss}}/\text{GeV} >$	160	160	200	200
$p_T(j_1)/\text{GeV} >$	130	130	200	200
$p_T(j_2)/\text{GeV} >$	60	60	100	100
$p_T(j_3)/\text{GeV} >$	60	60	100	100
$p_T(j_4)/\text{GeV} >$	60	60	100	100
$p_T(j_5)/\text{GeV} >$	_	60	_	50
$p_T(j_6)/\text{GeV} >$	_	60	_	50
$\Delta \phi$ (jet _{1,2,3} , $\mathbf{p}_T^{\text{miss}}$) _{min} >	0.4			
$\Delta \phi(\text{jet}_{j>3}, \mathbf{p}_T^{\text{miss}})_{\min} >$	0.2			
$p_T^{\text{miss}}/m_{\text{eff}}(N_j) >$	0.25		0.2	
$m_{\rm eff}({\rm incl.})/{\rm GeV} >$	2200	1500	2200	2000
$\sigma_{95}^{\rm obs}$ (fb)	0.15	0.32	2.7	1.6

The displaced vertex search

ATLAS Coll. Phys. Rev. D (2015)

Finding the track efficiency

Tracking efficiency determined by fitting parameters of an empirical function

$$\begin{split} \varepsilon_{\rm trk} &= 0.5 \times (1 - \exp(-p_T / [4.0 \ {\rm GeV}])) & \text{Remove low } p_{\rm T} \\ &\times \exp(-z / [270 \ {\rm mm}]) & \text{Dependence on } z \ {\rm of } \ {\rm DV} \ ({\rm i.e. \ truth \ of \ decay \ vertex}) \\ &\times \max(-0.0022 \times r_{\perp} / [1 \ {\rm mm}] + 0.8, 0) & \text{Dependence on radial \ distance \ of \ \rm DV} \end{split}$$

Finding the track efficiency

- Fitting any one benchmark gives vary bad fit for others
- → Not the right parameters? (we tried d₀, z₀ with no improvement)
- Hidden dependence on extra variables?
- Three benchmarks used to fit tracking parameters as a compromise

Dependence on DV mass and N_{trk}

Modifying the displaced vertex criteria

- It is possible to significantly improve efficiency by relaxing cuts
- Not easy to estimate background for these changes
- Our solution: combine prompt cuts + DV cuts & use prompt background estimate as a conservative upper limit
- Reach can be 1.9 TeV with 100/fb
- Much better sensitivity possible with better estimate of background

Summary

- Prompt searches lost sensitivity for this model due to presence of longlived particles
- Using displaced vertex signature with hard prompt cuts improves sensitivity of analysis + points to underlying model
- Much more optimisation of this search possible with a dedicated background estimate.
- It is currently not easy to recast displaced vertex searches; more input needed from experimentalists
- Also for proposing new searches: how to estimate background for this kind of searches?