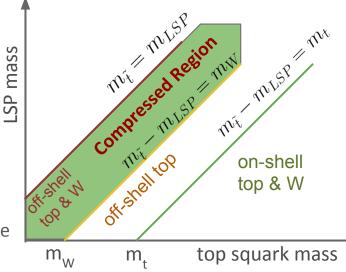
Compressed SUSY at CMS

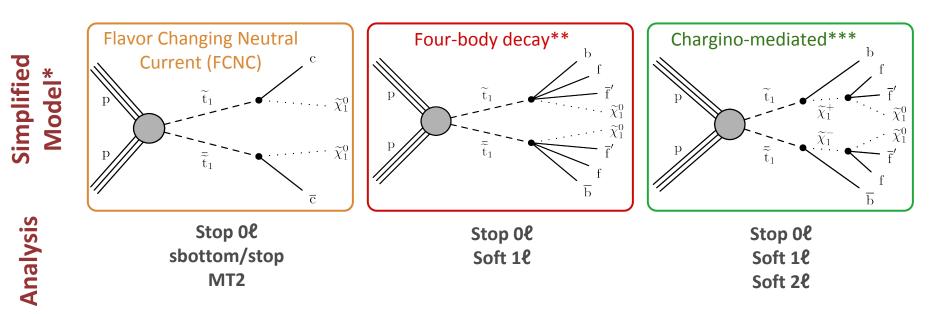
Navid K. Rad On behalf of the CMS collaboration SUSY17: Mumbai, India Dec 14, 2017



- Compressed SUSY:
 - Small mass difference (Δm) between the produced SUSY particles, and the lightest SUSY particle (LSP)
 - $\circ~\Delta m$ determines the allowed decays and the kinematics of the final state particles
 - In this talk: $\Delta m < m_w$ (ex. W and t are off-shell)

• Challenges:

- Due to small mass splitting, final state particles are soft (low transverse momenta)
 - Often too soft to pass the detector thresholds
 - <u>Unless</u>: an initial state radiation (ISR) is present!
 - The SUSY particles become boosted and therefore can enter acceptance
- Challenging region, but highly motivated!
 - relatively light stops/sbottom still allowed in this region!
 - Coannihilation between the stop and the LSP can help produce the correct dark matter relic densities



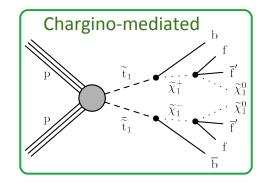
- Soft-Opposite-Sign (soft 2*l*):
 - <u>CMS-PAS-SUS-16-048</u>
- Soft Single-Lepton (soft 1*l*):
 - <u>CMS-PAS-SUS-16-052</u>
- All-Hadronic search (stop 0*l*):
 - <u>CMS-SUS-16-049</u>
 - o <u>arXiv:1707.03316</u>

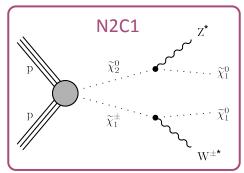
• Sbottom/stop search:

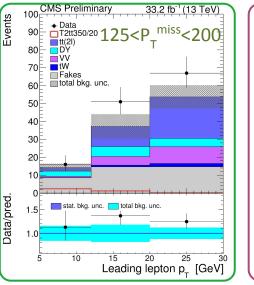
CMS

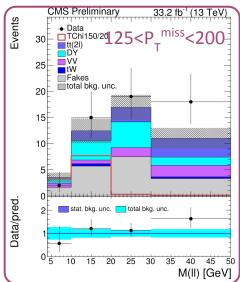
- <u>CMS-SUS-16-032</u>
- <u>arXiv:1707.07274</u>
- MT2 (Inclusive 0*l*):
 - <u>CMS-SUS-16-036</u>
 - o <u>arXiv:1705.04650</u>

- * Branching fractions assumed to be 100%
- ** life times are not taken into account for the four-body decay
- *** chargino mass is set half between stop and LSP



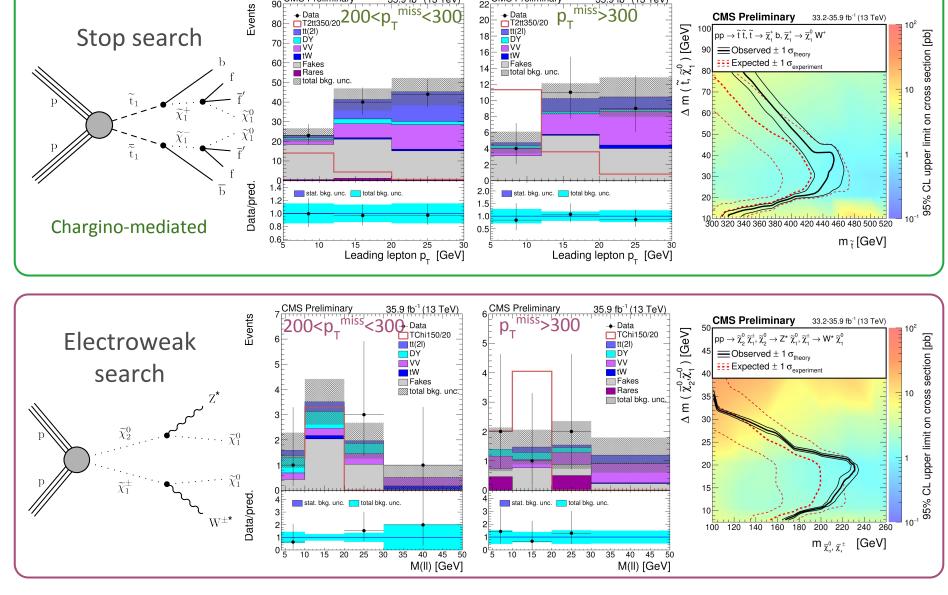

Soft Opposite-Sign leptons (soft 2^l)




• Selection:

- Two soft leptons with opposite signs
 - 3.5 GeV < $p_{T}(\mu)$ < 30 GeV
 - 5 GeV < $p_{T}(e)$ < 30 GeV
 - Dedicated dimuon trigger \rightarrow lower p_T^{miss} thresh.
- \circ N_b=0 reduce ttbar
- M($\tau\tau$) reduce DY $\rightarrow \tau\tau$
- Backgrounds:
 - \circ DY $\rightarrow au au$, ttbar
 - Dedicated CRs for each process in bins of p_T^{miss}
 - Diboson: From simulation, validation with data
 - Nonprompt leptons: "Fake-rate" method
- Two sets of signal regions:
 - Stop Search:
 - Includes all flavor combinations
 - Binned in $p_T(\ell)$, p_T^{miss}
 - "Ewkino" Search:
 - Motivated by higgsinos
 - Only same flavor leptons
 - Binned in M($\ell\ell$), p_T^{miss}

Soft 22: Results and Interpretations

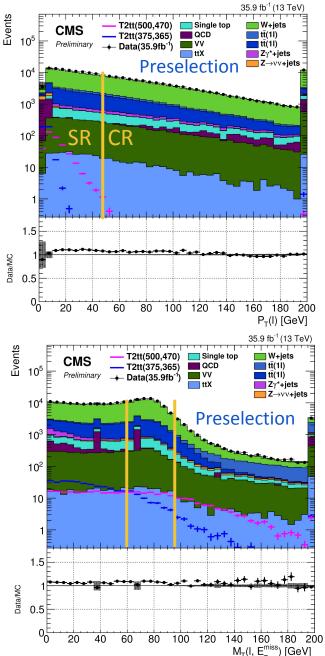

35.9 fb⁻¹ (13 TeV)

90 CMS Preliminary

22 CMS Preliminary

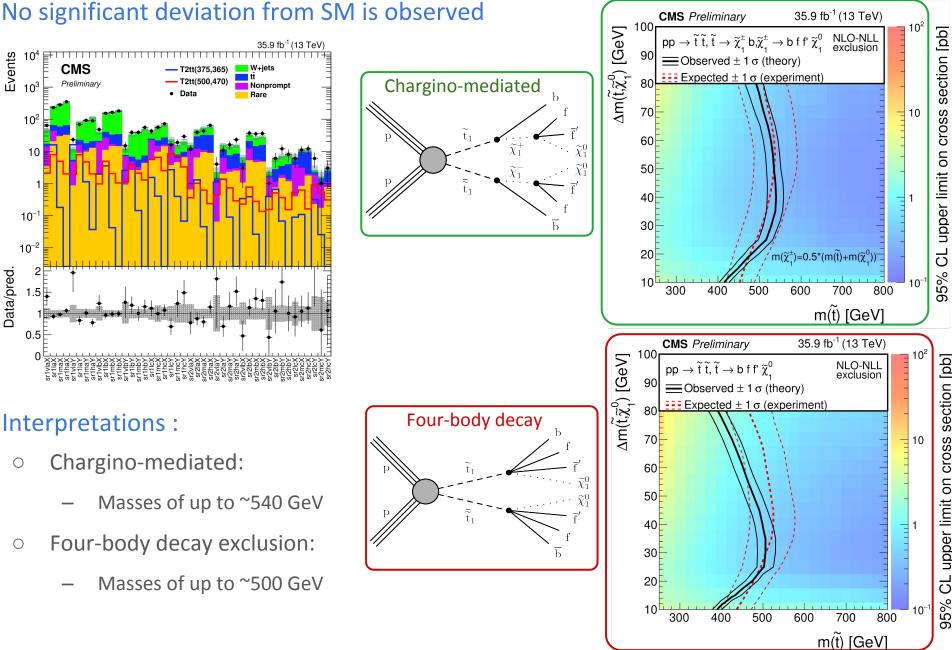
35.9 fb⁻¹ (13 TeV)

CMS


For more on Higgsinos see <u>Henning's talk</u>

• Selection:

- Soft single lepton (2nd hard lepton veto)
 - 3.5 GeV < p_T (μ) < 30 GeV
 - 5 GeV < $p_T(e)$ < 30 GeV
- Require a high-p_T jet as ISR
- Two sets of Signal Regions (SRs):
 - \circ SR1 (targeted to very low Δm)
 - $N_{b} = 0$, moderate p_{T}^{ISR}
 - Binned in combined variable $C_{T1}(p_T^{miss}, H_T)$
 - \circ SR2 (targeted to larger Δm)
 - One soft b-jet (but no hard ones)
 - Larger p_T^{ISR}
 - Binned in combined variable $C_{T2}(p_T^{miss}, p_T^{ISR})$
 - \circ SR1 and SR2 binned in $\rm p_{T}(l)$, $\rm m_{T}$ (44 SRs)
- Backgrounds:
 - Prompt: W+jets and ttbar
 - Normalization from $p_T(I) > 30$ GeV, shape from MC
 - Nonprompt estimated with "fake-rate" method
 - Rare-backgrounds from MC

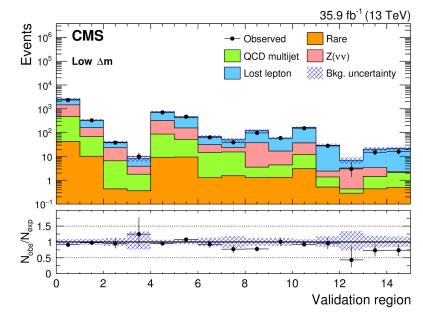


Events

Data/pred

Soft 1*l*: Results and Interpretations

Inclusive stop search covering the full range of stop-lsp plane!

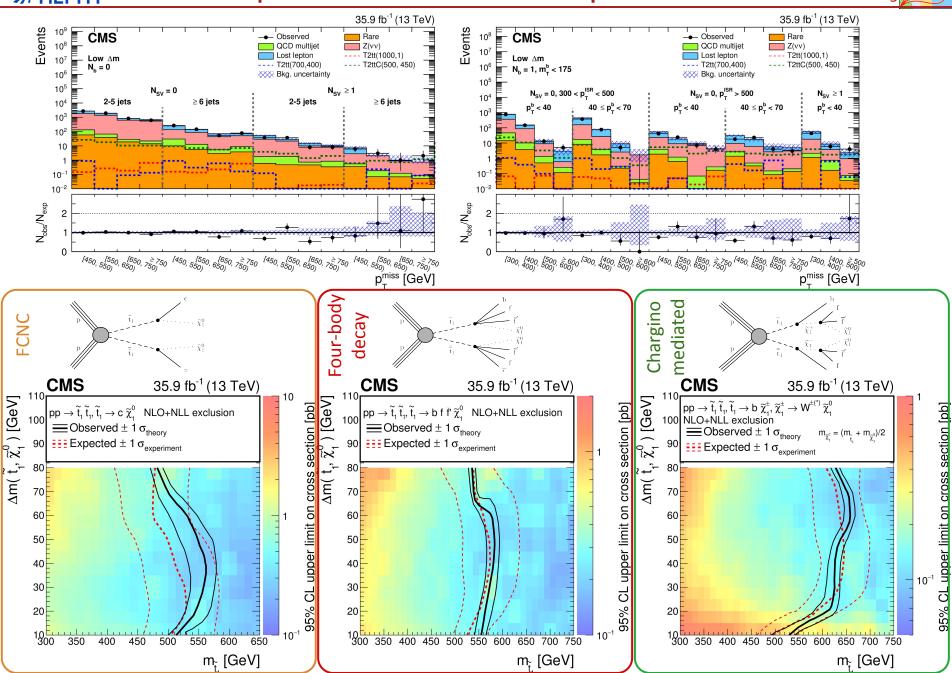

- Here I focus on ∆m< m(W)
- Novelties:
 - Soft-btagging:
 - Soft b from the stop decay, difficult to reconstruct
 - Identify secondary-vertex (SV) not associated to jets
 - 20% efficiency with <1% mistag rate (**10** <**p**_T(**b**)< **20** GeV)
 - ISR tag: Use "fat" jets to capture ISR from gluons

• Selection:

- \circ Require at least 2 jets with moderate p_T^{miss}
- Veto t or W candidates
- \circ Binned in N_b, N_{SV}, p_T^{ISR}, p_T^{miss}
- $\circ~$ 53 signal regions (optimized for small $\Delta m)$

Backgrounds

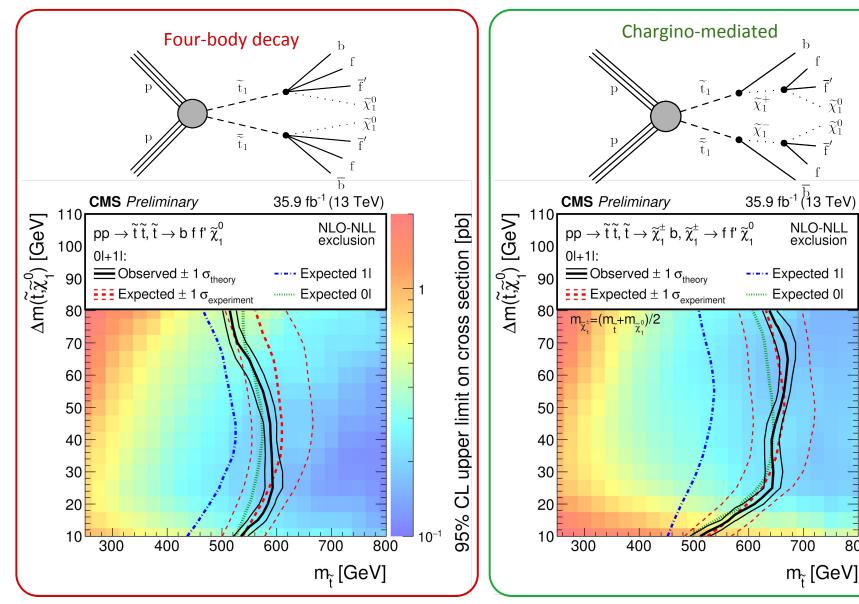
- Lost-Lepton background (W, ttbar)
- \circ ~ Z \rightarrow vv ~ (estimated from Z \rightarrow II and y+jets)
- QCD Multijet events



(For $\Delta m > m(W)$ refer to <u>Tom's talk</u>)

Stop Ol: Results and Interpretations

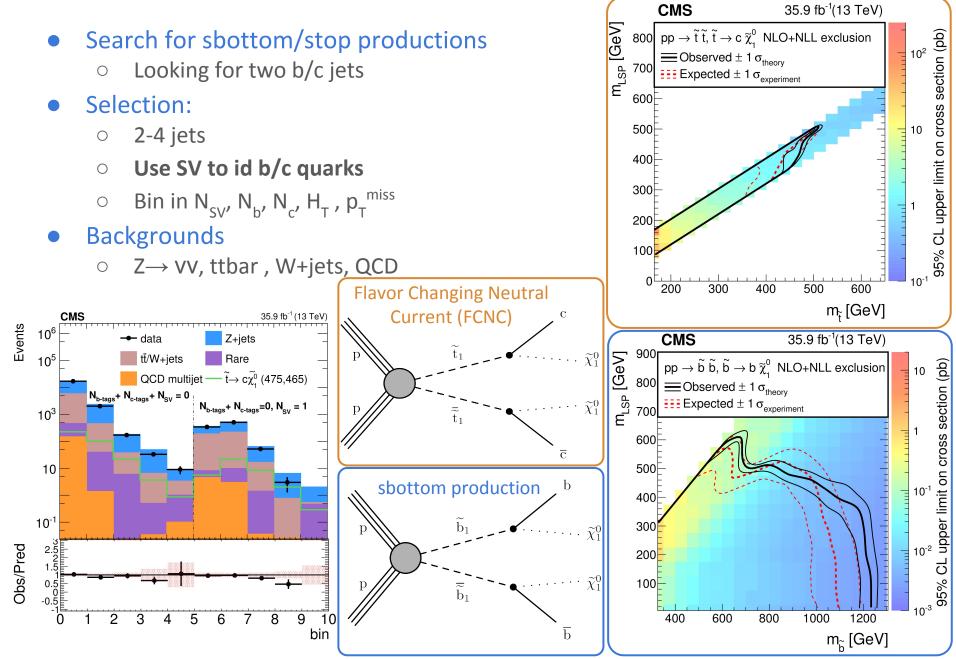
CMS



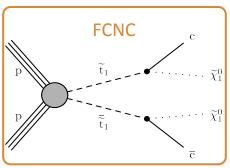
95% CL upper limit on cross section [pb]

10-1

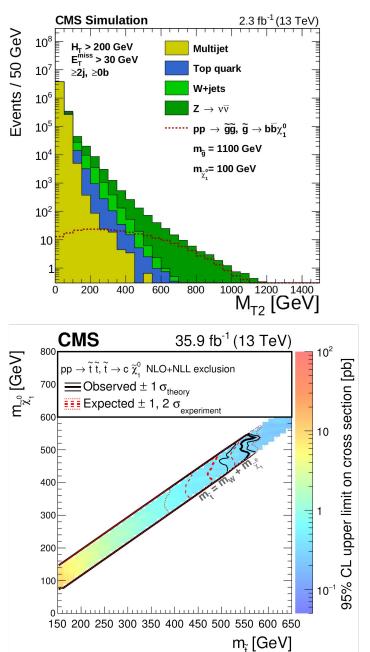
800


Statistical combination of 0l amd 1l searches:

Bottom and top squark production



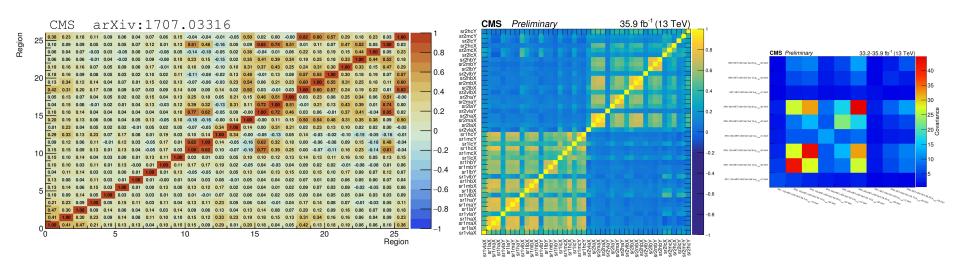
• Selection :


- Events with one jet:
 - $p_T(jet)>250 \text{ GeV}$, binned in N_b , $p_T(jet)$
- Events with least two jets:
 - Categorized in topological regions by:
 - N_{jets} , N_{b} , H_{T}
 - Further binned in M_{T2}

$$M_{\text{T2}} = \min_{\vec{p}_{\text{T}}^{\text{miss}X(1)} + \vec{p}_{\text{T}}^{\text{miss}X(2)} = \vec{p}_{\text{T}}^{\text{miss}}} \left[\max\left(M_{\text{T}}^{(1)}, M_{\text{T}}^{(2)}\right) \right]$$

- Backgrounds:
 - \circ Z \rightarrow VV
 - Lost lepton from W+jets, tt-production
 - Multijet events

• More interpretations in <u>Scarlet's talk</u>



Summary

- Thanks to the great performance of LHC in 2016, CMS was able to probe new regions in the SUSY parameter space, particularly the compressed region.
- Many new search and analysis tools developed to probe these difficult regions: tagging soft b quarks, muons as low as 3.5 GeV
- But still no hint of SUSY even in the compressed region!
- Results provided for reinterpretation for the analysis:
 - Covariance matrix, efficiency maps, etc (links provided on slide 3)
- Need to think of new interpretations, new topologies, new signatures!

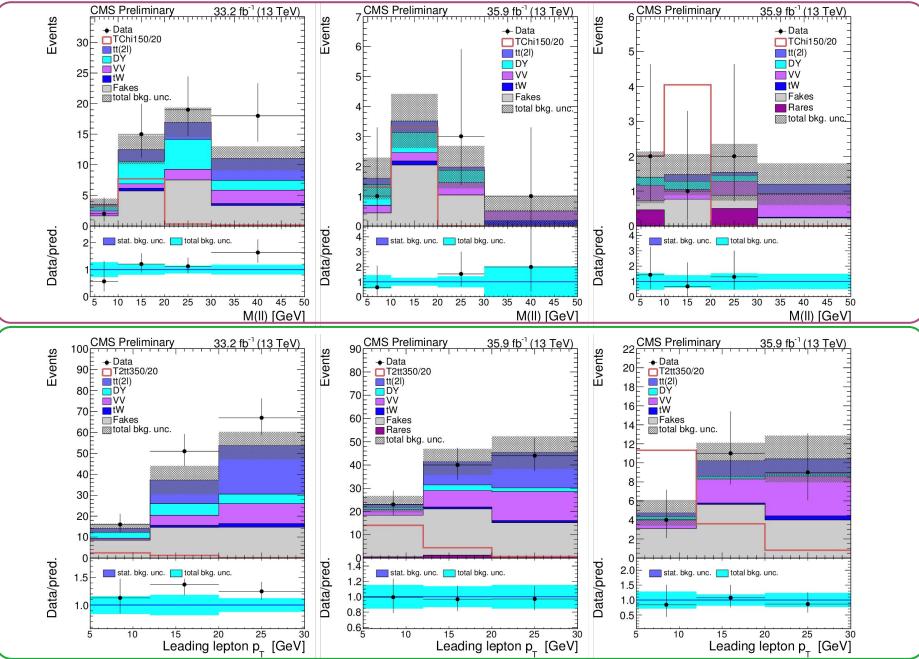
BACK UP

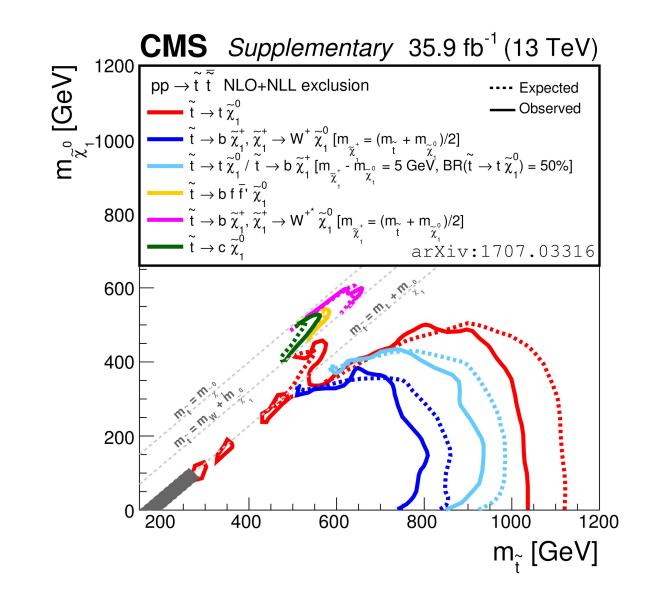
Variable	common to all SRs						
Number of hard jets	≤ 2						
$\Delta \phi$ (hard jets) (rad)	< 2.5						
$p_{\rm T}^{\rm miss}$ (GeV)	> 300						
Lepton rejection	no $ au$, or additional ℓ with $p_{\mathrm{T}} > 20 \mathrm{GeV}$						
		SR1		SR2			
$H_{\rm T}$ (GeV)	> 400			> 300			
$p_{\rm T}$ (ISR jet) (GeV)	> 100			> 325			
Number of b jets	0			≥ 1 soft, 0 hard			
$ \eta(\ell) $	< 1.5			< 2.4			
	SR1a	SR1b	SR1c	SR2a	SR2b	SR2c	
$m_{\rm T}$ (GeV)	< 60	60–95	> 95	< 60	60–95	> 95	
$Q(\ell)$	-1	-1	any	any	any	any	
$p_{\mathrm{T}}(\mu)$ (GeV)	3.5–5 (VL)	3.5–5 (VL)	-	3.5–5 (VL)	3.5–5 (VL)	-	
$p_{\mathrm{T}}(\mathbf{e},\mu)$ (GeV)	5–12 (L)	5–12 (L)	5–12 (L)	5–12 (L)	5–12 (L)	5–12 (L)	
	12–20 (M)	12–20 (M)	12–20 (M)	12–20 (M)	12–20 (M)	12–20 (M)	
	20–30 (H)	20–30 (H)	20–30 (H)	20–30 (H)	20–30 (H)	20–30 (H)	
	> 30 (CR)	> 30 (CR)	> 30 (CR)	> 30 (CR)	> 30 (CR)	> 30 (CR)	
$C_{\rm T}$ (GeV)	$300 < C_{\rm T1} < 400$ (X)			$300 < C_{\text{T2}} < 400 \text{ (X)}$			
	$C_{\rm T1} > 400 ({ m Y})$			$C_{\rm T2} > 400 ~({ m Y})$			

2^l: Region Definitions

Variable	SR selection criteria		
N_ℓ	$= 2 (ee, \mu\mu, e\mu)$		
$Q(\ell_1)Q(\ell_2)$	-1		
$p_{\mathrm{T}}(\ell_1)$, $p_{\mathrm{T}}(\ell_2)$	[5,30] GeV		
$p_{\rm T}(\mu_2)$ for high $E_{\rm T}^{\rm miss}$ \tilde{t} -like SR	[3.5, 30] GeV		
$ \eta_{\mu} $	< 2.4		
$ \eta_{\rm e} $	< 2.5		
IP_{3D}	< 0.01 cm		
SIP_{3D}	< 2		
$Iso_{rel}(\ell_{1,2})$ & $Iso_{abs}(\ell_{1,2})$	< 0.5 && $< 5~{ m GeV}$		
$p_{\rm T}(jet1)$	> 25 GeV		
$ \eta (jet1)$	< 2.4		
N_b (>25 GeV, CSVv2L)	= 0		
$M(\ell\ell)$	$< 50 \mathrm{GeV}$		
$p_{ m T}(\ell\ell)$	$> 3 \mathrm{GeV}$		
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 125 GeV		
$E_{\rm T}^{\rm miss}$ (muon subtracted)	> 125 GeV		
$E_{\rm T}^{\rm miss}/H_{\rm T}$	[0.6, 1.4]		
$H_{ m T}$	> 100 GeV		
$M(\ell\ell)$	$> 4 \mathrm{GeV}$		
$M(\ell\ell)$	veto[9, 10.5] GeV		
$M_{ au au}$	veto[0, 160] GeV		
$M_{\mathrm{T}}(\ell_x, E_{\mathrm{T}}^{\mathrm{miss}}), x = 1, 2$	< 70 GeV (for electroweakino selection only)		

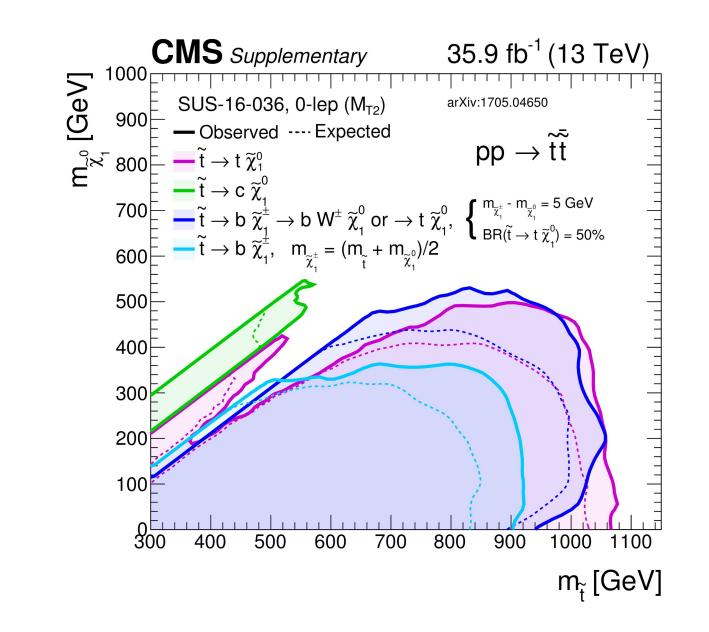
Soft 2*l*: Results




Table 2: Summary of the 53 non-overlapping search regions that mainly target low Δm signal. The low Δm baseline selection is $N_j \ge 2$, $p_T^{\text{miss}} \ge 250 \text{ GeV}$, no leptons, $N_t = N_W = N_{\text{res}} = 0$, $m_T^b < 175 \text{ GeV}$ (when applicable), $|\Delta \phi(j_1, \vec{p}_T^{\text{miss}})| \ge 0.5$, $|\Delta \phi(j_{2,3}, \vec{p}_T^{\text{miss}})| \ge 0.15$, and an ISR jet with $p_T^{\text{ISR}} \ge 300 \text{ GeV}$, $|\eta| \le 2.4$, $|\Delta \phi(j_{\text{ISR}}, \vec{p}_T^{\text{miss}})| \ge 2$, and $S_{E_T} \ge 10 \sqrt{\text{GeV}}$.

N_{j}	Nb	N _{SV}	$p_{\rm T}^{\rm ISR}$ [GeV]	$p_{\rm T}^{\rm b}$ [GeV]	$p_{\rm T}^{\rm miss}$ [GeV]
2–5	2-5 ≥ 6	0			450–550, 550–650, 650–750, ≥750
≥ 6		0	>500		450–550 <i>,</i> 550–650 <i>,</i> 650–750 <i>,</i> ≥750
2–5	0	≥ 1	<u>≥</u> 300		450–550 <i>,</i> 550–650 <i>,</i> 650–750 <i>,</i> ≥750
≥ 6		≥ 1			450–550 <i>,</i> 550–650 <i>,</i> 650–750 <i>,</i> ≥750
		0	300–500	20-40	300-400, 400-500, 500-600, ≥600
		0	300-500	40–70	300–400, 400–500, 500–600, ≥600
≥ 2	1	0	\geq 500	20-40	450–550 <i>,</i> 550–650 <i>,</i> 650–750 <i>,</i> ≥750
		0	\geq 500	40–70	450–550 <i>,</i> 550–650 <i>,</i> 650–750 <i>,</i> ≥750
		≥ 1	\geq 300	20-40	300–400, 400–500, ≥500
≥ 2		$\geq 2 \geq 0$	300–500	40-80	300-400, 400-500, ≥500
≥ 2			300–500	80–140	300–400, 400–500, ≥500
≥ 7			300–500	≥ 140	300–400, 400–500, ≥500
≥ 2			\geq 500	40-80	450 − 550, 550 − 650, ≥650
≥ 2			\geq 500	80–140	450–550 <i>,</i> 550–650 <i>,</i> ≥650
≥ 7			\geq 300	≥ 140	450–550 <i>,</i> 550–650 <i>,</i> ≥650

Ol: Limits Summary



	$p_{\rm T}^{\rm miss}$ > 120 GeV and $H_{\rm T}^{\rm miss}$ > 120 GeV or		
Trigger	$H_{\rm T}$ > 300 GeV and $p_{\rm T}^{\rm miss}$ > 110 GeV or		
	$H_{\rm T} > 900 {\rm GeV}$ or jet $p_{\rm T} > 450 {\rm GeV}$		
Jet selection	$R = 0.4, p_{\rm T} > 30 { m GeV}, \eta < 2.4$		
b tag selection	tag selection $ p_{\rm T} > 20 { m GeV}, \eta < 2.4$		
	$p_{\rm T}^{\rm miss}$ > 250 GeV for $H_{\rm T}$ < 1000 GeV, else $p_{\rm T}^{\rm miss}$ > 30 GeV		
$p_{\mathrm{T}}^{\mathrm{miss}}$	$\Delta \phi_{\min} = \Delta \phi \left(p_{\mathrm{T}}^{\mathrm{miss}}, j_{1,2,3,4} \right) > 0.3$		
	$ \vec{p}_{\mathrm{T}}^{\mathrm{miss}} - \vec{H}_{\mathrm{T}}^{\mathrm{miss}} /p_{\mathrm{T}}^{\mathrm{miss}} < 0.5$		
M_{T2}	$M_{\rm T2} > 200 {\rm GeV}$ for $H_{\rm T} < 1500 {\rm GeV}$, else $M_{\rm T2} > 400 {\rm GeV}$		
Veto muon	$p_{ m T} > 10{ m GeV}, \eta < 2.4, p_{ m T}^{ m sum} < 0.2 p_{ m T}^{ m lep}$ or		
	$p_{\rm T} > 5 { m GeV}, \eta < 2.4, M_{\rm T} < 100 { m GeV}, p_{\rm T}^{\rm sum} < 0.2 p_{\rm T}^{ m lep}$		
Veto electron	$p_{\rm T} > 10 { m GeV}, \eta < 2.4, p_{\rm T}^{ m sum} < 0.1 p_{\rm T}^{ m lep}$ or		
	$p_{\rm T} > 5 { m GeV}, \eta < 2.4, M_{\rm T} < 100 { m GeV}, p_{\rm T}^{\rm sum} < 0.2 p_{\rm T}^{ m lep}$		
Veto track	$p_{\rm T} > 10 { m GeV}, \eta < 2.4, M_{\rm T} < 100 { m GeV}, p_{\rm T}^{\rm sum} < 0.1 p_{\rm T}^{\rm track}$		
p ^{sum} cone	Veto e or μ : $\Delta R = \min(0.2, \max(10 \text{GeV}/p_{\text{T}}^{\text{lep}}, 0.05))$		
F1 Conc	Veto track: $\Delta R = 0.3$		

