

Search for supersymmetric partners of neutral Higgs bosons at CMS

> Henning Kirschenmann on behalf of the CMS Collaboration

A state of the state of the same of the state of the stat

The case for higgsinos

- Classic naturalness arguments require light Only higgsinos enter Higgs mass at tree level gluinos, stops, higgsinos
 - Gluinos and stops with largest cross section, strong exclusion exist

Excluded masses (model dependent)

 $-\frac{m_Z^2}{2} = |\mu^2| + m_{H_u}^2 + \mathcal{O}$

Analyses covered here

GMSB: HH→bbbb

- Search for new physics in the HH+MET final state
- Sensitive to higgsinos in the context of GMSB
- Utilise largest Higgs branching fraction to bb
- Reconstruct two $H \rightarrow bb$ candidates in events with 4 or 5 jets, 0l, and MET > 150 GeV
- Minimise mass difference $\Delta m = Im(H1)-m(H2)I$, calculate average \mathbf{A}_{4} mass $\langle \mathbf{m} \rangle$

Baseline selection: 0ℓ , 4–5 jets $N_{\rm b,T} \ge 2$ $p_{\rm T}^{\rm miss} > 150 \,{
m GeV}$ Track veto $\Delta \phi_{1,2} > 0.5, \Delta \phi_{3,4} > 0.3$ $|\Delta m| < 40 \,\mathrm{GeV}$ $\Delta R_{\rm max} < 2.2$

Background estimate

Control regions for main backgrounds

Extrapolation from 2b to 3b/4b (k) compatible with 1 in signal region (MET>150 GeV)

Improvements in algorithms...: HH→bbbb

- Signal regions: 3b/4b xMET[150,200,300,450,Inf]
- First users of DNN-based b-tagging using ~same inputs as previous standard (and successors already on the way)
- Exclude GMSB Higgsinos between 225 and 770 GeV

7

These are the kind of object improvements that help surpassing luminosity scaling of limits

GMSB: $H \rightarrow \gamma \gamma$ razor

EWK Combination (SUS-17-004)

Limits depend on branching fractions

Limits depend on branching fractions

Neutralino-chargino ($\tilde{\chi}_2^0 - \tilde{\chi}_1^{\pm}$) pair production

Soft opposite-sign leptons

- Light higgsinos would likely have a compressed mass spectrum
- Results in low p_T decay products
 - Target this signature with soft leptons
 - Rely on events with large ISR boost for sizeable MET
 - ▶ pT(µ): 3.5-30 GeV
 - ▶ pT(e): 5-30GeV
- Backgrounds: W+jets, 1L/2L tt, Z→tau,tau
 - From MC normalized to data in control regions

Navid's talk for details

Soft opposite-sign leptons

- Light higgsinos would likely have a compressed mass spectrum
- ▶ Results in low p_T decay products
 - soft leptons

Navid's talk for details

Neutralino-chargino ($\tilde{\chi}_2^0 - \tilde{\chi}_1^{\pm}$) pair production combination

Conclusions

- Improving reconstruction and analysis techniques is key for probing beyond "early SUSY"
- Improved trigger for soft opposite-sign lepton search (muons down to 3.5 GeV) and DNN-btagging for GMSB HH \rightarrow bbbb search prominent examples

- harvest Run 2 dataset to the fullest 14
- No supersymmetric neutral Higgs boson partners found, yet, but putting everything in place to

Particle Flow (PF) approach

Supersymmetry or Supercemetry?

17

- No surprises with full 2016 dataset
- But: Simplified Model Searches (SMS) trick the eye (e.g. typically assume 100% branching fraction in a particular channel + mass degeneracy)
- Focus on compressed/EW/ Higgs/VBF and usage of new tools

Neutralino-chargino ($\tilde{\chi}_2^0 - \tilde{\chi}_1^{\pm}$) pair production

