X-ray Polarimetry by Scattering and GEANT4

Mithun N. P. S.

Physical Research Laboratory, Ahmedabad, India

E-mail:mithun@prl.res.in

1st National Workshop on GEANT4 and its application to High-Energy Physics and Astrophysics 05 - 09 Dec 2022 IUCAA Pune

Observations of astrophysical sources in X-rays

Time

Position

Energy

		_ ×	□ Y	🗌 PHA	🗌 PI
	D	J	J	1	- I
	s	0.05 ARCSECONDS	0.05 ARCSECONDS	CHAN	CHAN
1	9.506202266412E+07	23743	21330	423	1447
2	9.506202266412E+07	28728	21990	25	98
3	9.506202527717E+07	28176	31623	25	97
4	9.506202527717E+07	29829	30841	327	1131
5	9.506202527717E+07	23686	19319	541	1854
6	9.506203046611E+07	25510	32711	1810	6171
7	9.506203566620E+07	29814	28823	102	360
8	9.506203826626E+07	26635	30601	2062	7028
9	9.506204346625E+07	26429	20314	443	1519
10	9.506204606629E+07	20691	28728	1608	5471
11	9.506204606629E+07	27989	29777	202	700
12	9.506204606629E+07	21937	25667	117	402
13	9.506204866632E+07	28132	32491	462	1589
14	9.506204866632E+07	27204	29741	904	3095
15	9.506205126638E+07	22124	20257	290	994
16	9.506205906643E+07	23193	18795	1398	4771
17	9.506206166646E+07	23224	19326	276	950

Another property of electromagnetic radiation: Polarization

Figure from Encyclopædia Britannica

Another property of electromagnetic radiation: Polarization

But should we care about measuring it?

Figure from Encyclopædia Britannica

Figure from A K Harding

All models are able to predict the observed pulse profiles to a great extent

Phase-resolved polarization measurements to potentially break the degeneracy

Science case for polarimetry

Pulsars was just an example – several cases for polarimetric observations in X-rays

Black-hole binaries and AGNs Magnetars Gamma Ray Bursts The Sun!

• • • •

Science case for polarimetry

Pulsars was just an example – several cases for polarimetric observations in X-rays

Black-hole binaries and AGNs Magnetars Gamma Ray Bursts The Sun!

••••

••••

If it is so important, shouldn't there be significant advances by now?

In comparison: First X-ray polarization measurement in 1978 and it was this year (2022) a dedicated X-ray polarimeter (in 2-8 keV) that has made some increase in number of sources with polarization measurement in X-ray energies

In comparison: First X-ray polarization measurement in 1978 and it was this year (2022) a dedicated X-ray polarimeter (in 2-8 keV) that has made some increase in number of sources with polarization measurement in X-ray energies

Problem: Difficulty in measuring Polarization in X-rays.

In comparison: First X-ray polarization measurement in 1978 and it was this year (2022) a dedicated X-ray polarimeter (in 2-8 keV) that has made some increase in number of sources with polarization measurement in X-ray energies

Problem: Difficulty in measuring Polarization in X-rays.

How do measure polarization?

Interaction of photon with matter

Interaction of photon with matter

Energy depositions/total attenutation in materials: Not dependant on polarization

Interaction of photon with matter

Energy depositions/total attenutation in materials: Not dependant on polarization

We need to go into the differential cross sections of the interaction

Photoelectric interaction

(c) OR (d)

Photoelectric interaction

(c) OR (d)

Costa et al (2002)

 $d\sigma = r_e^2 (1 - \sin^2 \theta \cos^2 \varphi) d\theta d\varphi$

 $\frac{d\sigma}{d\Omega} = \frac{r_0^2}{2} \left(\frac{E'}{E}\right)^2 \left(\frac{E'}{E} + \frac{E}{E'} - 2\sin^2\theta\cos^2\phi\right)$

Thomson scattering cross section and Klein Nishina cross section for free electrons

Thomson scattering cross section and Klein Nishina cross section for free electrons

Modified cross sections for bound electrons in atoms: But dependance on azimuthal angle remains the same

Keirans et al (2022)

One more technique: Bragg reflection – limited to very narrow energy range

Obtaining polarization fraction from azimuthal angle distributions

Obtaining polarization fraction from azimuthal angle distributions

$$C(\varphi) = A\cos^2(\varphi - \varphi_0) + B$$

$$\mu = \frac{C_{\text{max}} - C_{\text{min}}}{C_{\text{max}} + C_{\text{min}}} \qquad P = \frac{\mu_P}{\mu_{100}}$$

Obtaining polarization fraction from azimuthal angle distributions

$$C(\varphi) = A\cos^2(\varphi - \varphi_0) + B$$

How to measure the azimuthal angle distribution of photo-electron or scattered photon?

Photo-electric polarimeters

Weisskopf et al (2022)

Photo-electric polarimeters

Weisskopf et al (2022)

Photo-electric polarimeters

IXPE Detectors: Works at low energies, ie up to ~8 keV

Weisskopf et al (2022)

An ideal polarimeter

POLIX: Rayleigh Scattering with Be scatterer

8-30 keV

Rishin et al (2010)

AstroSat CZT-Imager: Compton

Above 100 keV

AstroSat CZT-Imager: Compton

Above 100 keV

POLAR: Compton Li et al (2018)

Scattering polarimeters: Compton polarimeter

Plastic scintillator as scatterer

Csi/Nal scintillator read by SiPM as absorber

~20-200 keV

Chattopadhyay et al (2016)

Scattering polarimeters: Why we need GEANT4

 \mathcal{L}_{100} Modulation for 100% polarized photons

Scattering polarimeters: Why we need GEANT4

 μ_{100} Modulation for 100% polarized photons

Making polarized X-rays

(c)

Scattering polarimeter: The tutorial

Scattering polarimeter: The tutorial

Thank you!