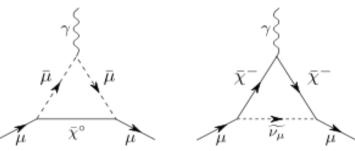
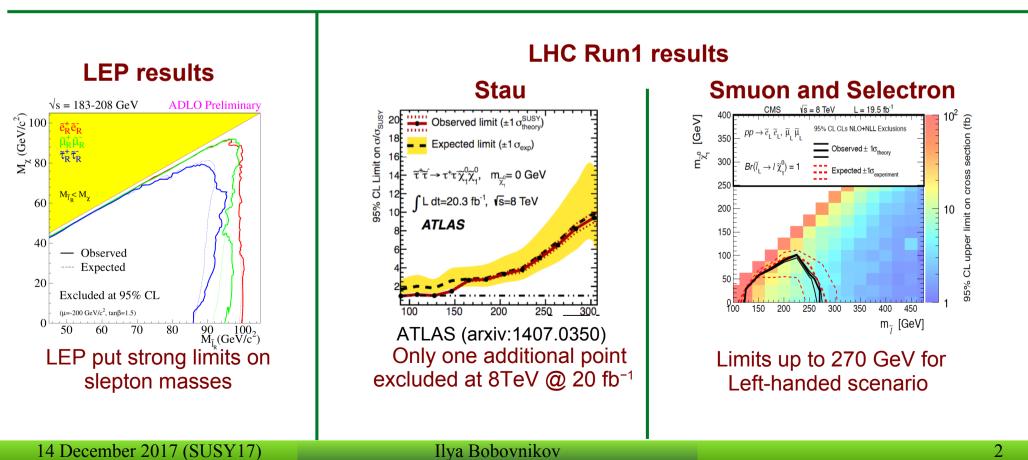


Search for sleptons and charginos at CMS

Ilya Bobovnikov on behalf of the CMS collaboration


DESY SUSY17, TIFR, Mumbai



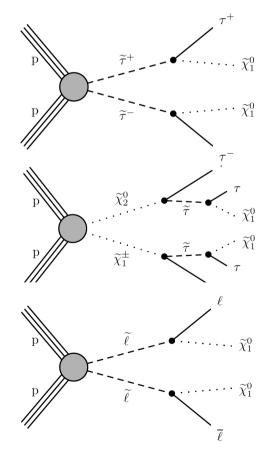
Introduction

- LSP co-annihilation with light stau could bring the neutralino relic density to the observed value
- SUSY can explain $\sim 3\sigma$ deviation of muon g 2 from SM prediction \rightarrow light electroweak sector

Covered the slepton searches

All results are based on 36 fb⁻¹ of data collected at $\sqrt{s} = 13$ TeV during 2016 at the CMS experiment

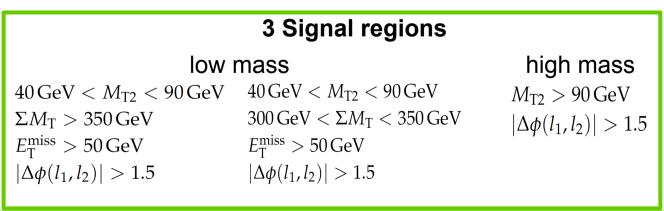
- Stau production
 - search in the all-hadronic tau decay final state $(\tau_h \tau_h)$ SUS-17-003

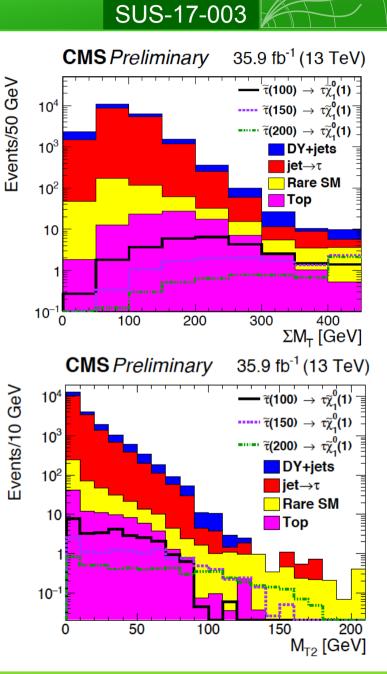


search in semi-hadronic and leptonic tau decay final state ($\mu \tau_h, e \tau_h, e \mu$) SUS-17-002

Smuon and selectron production

search two opposite-charge, same-flavor (OCSF) leptons ($\mu^{\pm} \mu^{\mp}, e^{\pm}e^{\mp}$) SUS-17-009

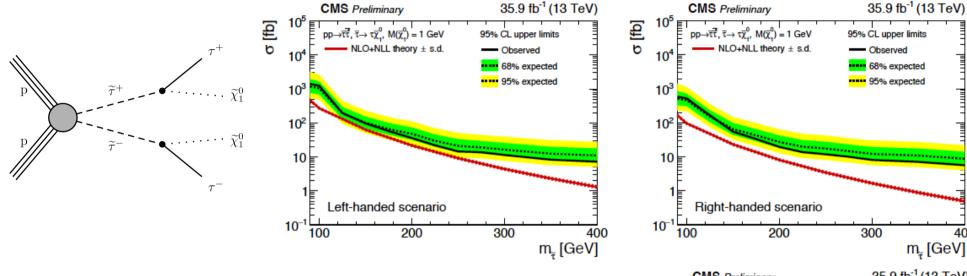

Search strategy $\tau_h \tau_h$

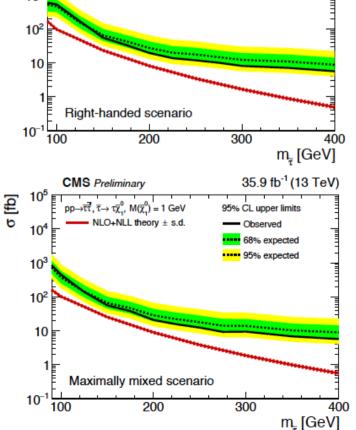

Selection

- Opposite charge pair of identified isolated taus
- No additional leptons
- Number of b-tagged jets = 0

Background estimation

- Z+jets: Check DY mass and pT spectrum in dimuon CR and correct the simulation for any discrepancies
- QCD, W+Jets: Background if jet fakes tau fake rate derived in same sign data events and parameterized as function of pT and decay mode
- Other rare backgrounds taken from simulation



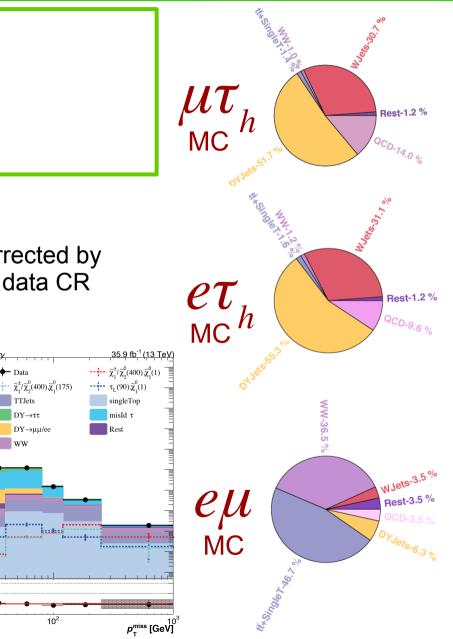

14 December 2017 (SUSY17)

Interpretation $\tau_h \tau_h$

Interpretation is done for three different helicity scenarios

- No significant deviation in any signal region
- Direct stau production not yet excluded due to low cross section
- For left-handed stau of around 125 GeV and a massless LSP we exclude 1.5 times the expected SUSY cross-section.

SUS-17-003



Selection

- Opposite charge pair of identified isolated leptons
- No additional leptons
- Number of jets \leq 1, number of b-tagged jets = 0

Background estimation

- Z+jets and top pair production: shape from MC is corrected by data in dimuon CR and scaled to normalization from data CR
- Jets misidentified as τ_h (only for $\mu \tau_h$ and $e \tau_h$) and QCD multijet (only for $e\mu$): shape is uq 109 Entries estimated from data CR and transfer factor is calculated as a ratio of normalizations in from orthogonal CRs
- Other rare backgrounds taken from simulation

10⁸

10⁵

10

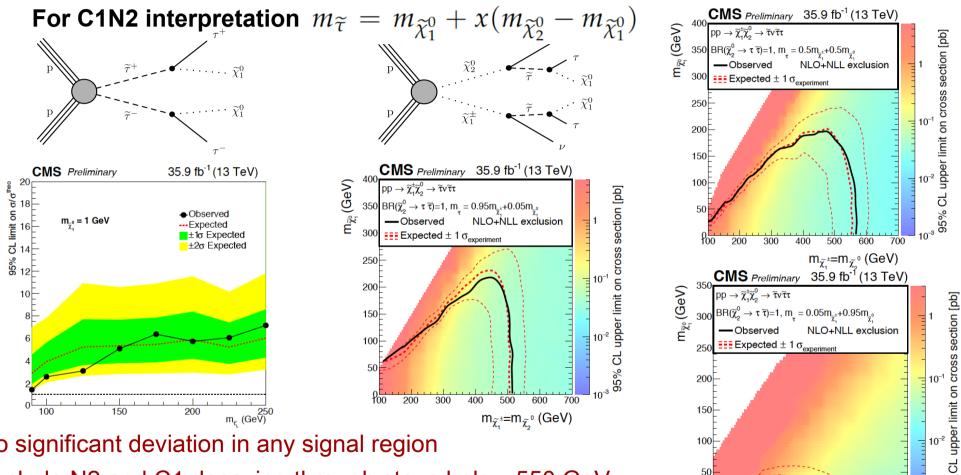
Interpretation $\mu \tau_{\mu}$, $e \tau_{\mu}$, $e \mu$

SUS-17-002

50

200

300


400

500

600

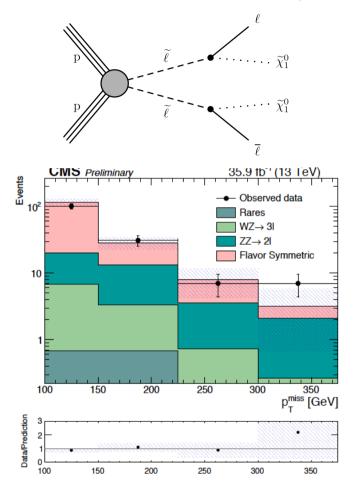
 $m_{\tilde{\chi}^{\pm}} = m_{\tilde{\chi}^{0}}$ (GeV)

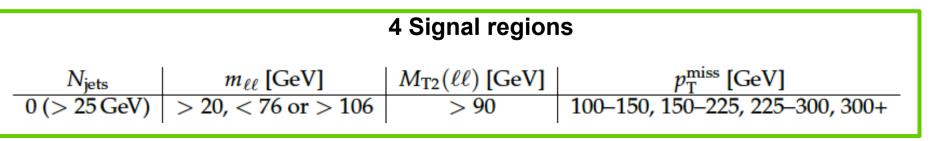
132 search bins are defined with kinematic variables and jet multiplicity

- No significant deviation in any signal region
- Exclude N2 and C1 decaying through staus below 550 GeV
- Direct stau production not yet excluded due to low cross section
- For left-handed stau of around 90 GeV and a massless LSP we exclude 1.5 times the expected SUSY cross-section.

700

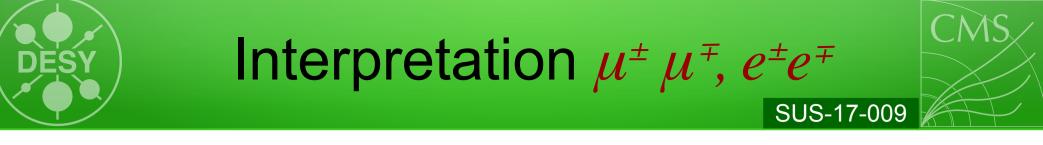
Search strategy $\mu^{\pm} \mu^{\mp}$, $e^{\pm}e^{\mp}$

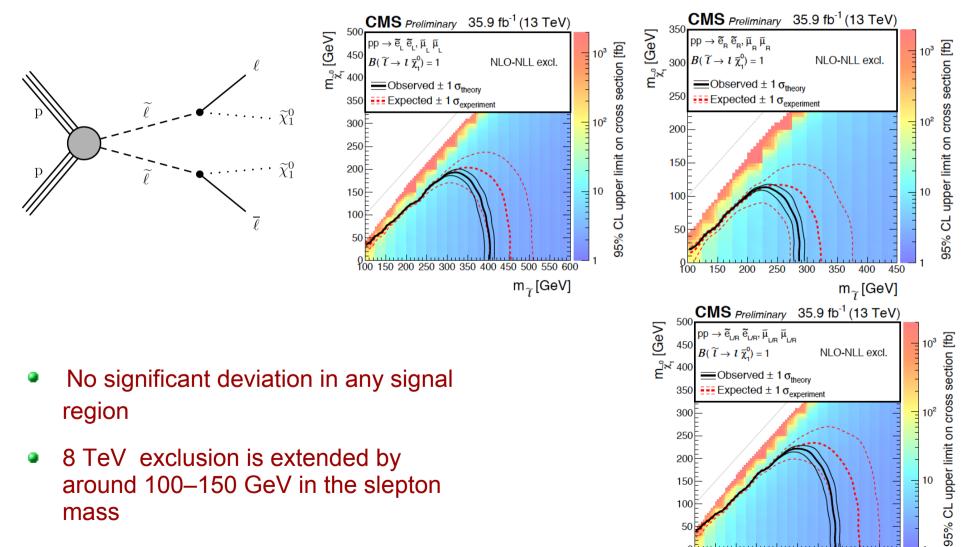

e[±]e[∓] SUS-17-009


Selection

- Opposite charge pair of identified same flavor muons or electrons
- No additional leptons
- Number of jets = 0

Background estimation


- Top and W pair production (flavor symmetric): Background yields are estimated from opposite flavor CR
- ZZ and WZ: Shape from MC is validated and normalized from data derived from CR



14 December 2017 (SUSY17)

Ilya Bobovnikov

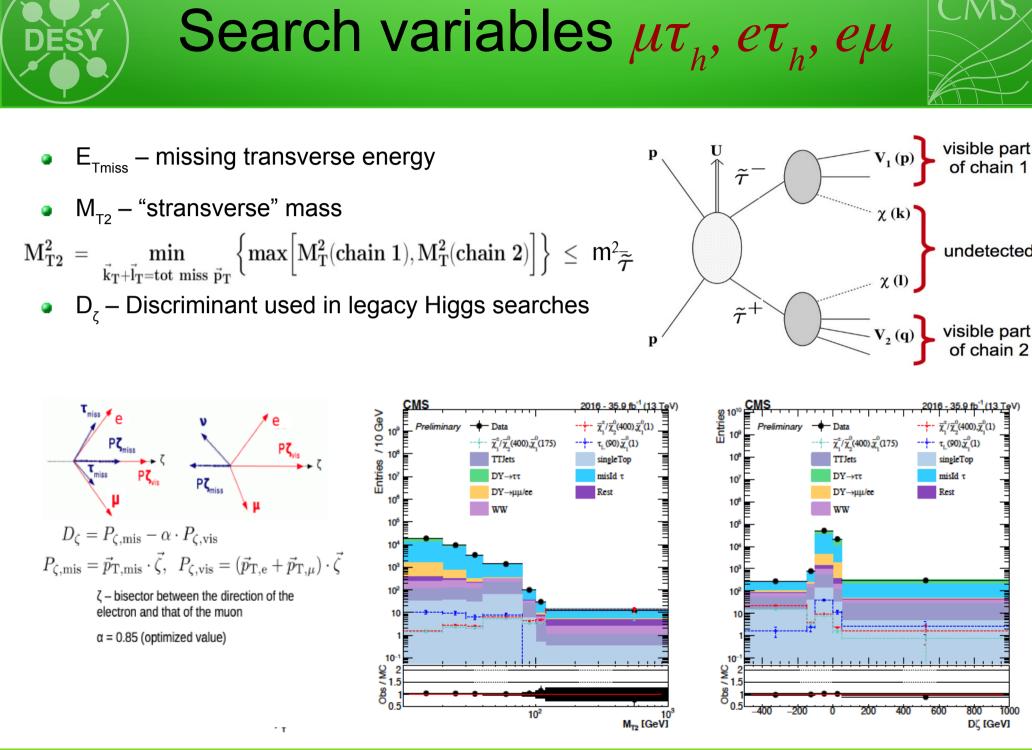
Interpretation is done for three different helicity scenarios

14 December 2017 (SUSY17)

0 150 200 250 300 350 400 450 500 550 600

 m_{γ} [GeV]

- CMS
- Search for sleptons and charginos has been presented using 36 fb⁻¹ of data collected by CMS
 - Direct stau production $(\tau_h \tau_h)$ CMS-PAS-SUS-17-003
 - Direct and indirect stau production ($\mu \tau_h, e \tau_h, e \mu$) CMS-PAS-SUS-17-002
 - Smuon and Selectron production ($\mu^{\pm} \mu^{\mp}, e^{\pm}e^{\mp}$) CMS-PAS-SUS-17-009
- None of the analyses show significant deviation from SM



Full hadronic stau

	SR1	SR2	SR3
Non-prompt and misidentified taus	$0.68 \ ^{+0.90}_{-0.68}$	2.49 ± 1.83	<1.24
Drell-Yan background	$0.80_{-0.80}^{+0.97}$	< 0.71	< 0.71
Top-quark related background	$\begin{array}{c} 0.80\substack{+0.97\\-0.80}\\ 0.02\substack{+0.03\\-0.02}\end{array}$	0.73 ± 0.31	1.76 ± 0.68
Rare SM processes	0.72 ± 0.38	$0.20{\pm}~0.15$	$0.20\pm^{+0.25}_{-0.20}$
Total background	$2.22^{+1.37}_{-1.12}$	$4.35^{+1.75}_{-1.53}$	$3.70^{+1.52}_{-1.08}$
Left (150,1)	1.25 ± 0.40	2.91 ± 0.59	1.53 ± 0.33
Right (150,1)	1.09 ± 0.26	1.27 ± 0.20	0.74 ± 0.17
Mixed (150,1)	1.04 ± 0.22	1.39 ± 0.27	0.92 ± 0.15
Observed	0	5	2

14 December 2017 (SUSY17)

Ilva Bobovnikov

1000

800

DĽ [GeV]

visible part of chain 1

undetected

Slection $\mu \tau_h$, $e \tau_h$, $e \mu$

Event selection

- Two opposite sign (OS) leptons ($\mu\tau$, $e\tau$, or $e\mu$) with $\Delta R > 0.3$ and no additional leptons
- $n_{\rm jet} < 2$ and $n_{\rm b-tag} = 0$
- $M_{\ell_1\ell_2} > 50 \text{ GeV}$ and $M_{\text{Tsum}} > 50 \text{ GeV}$ (low mass-resonances rejection)
- 20 < $M_{\rm T}$ < 60 GeV or $M_{\rm T}$ > 120 GeV ($\mu\tau$, e τ channel) (W+jets rejection)
- $90 < M_{\mu e} < 250 \text{ GeV} (Z+\text{jets rejection})$
- $P_T(\ell_i) < 200 \text{ GeV} (i=e,\mu, \text{ for the } e\mu \text{ channel only})$
- $|d_z(\ell_i)| < 0.2 \,\mathrm{cm}, |d_{xy}(\ell_i)| < 0.045 \,\mathrm{cm}$ (non-prompt ℓ background rejection)
- $\Delta \eta(J_0, \ell_{1,2}) < 3$ (e τ and $\mu \tau$ channels, 1-jet category only)
- $\Delta R(J_0, \tau) < 4$ (e τ and $\mu\tau$ channels, 1-jet category only)

Search bins

					Bin name	$p_T^{miss}[GeV]$	M_{T2} [GeV]	<i>Dζ</i> [GeV]	n _{jet}
Bin name	$p_T^{miss}[GeV]$	M _{T2} [GeV]	Dζ [GeV]	njet	p_T ^{miss} _AM _{T2A} Dζ _B	<40	<40	<-150	1
$p_T^{miss} A M_{T2A} D \zeta_{B-}$	<40	<40	<-100	0	p _T ^{miss} _A M _{T2A} Dζ _B			[-150,100]	
$p_T^{miss} {}_A M_{T2B+} D\zeta_{A+}$	-	>40	>-500	†	$p_T^{miss} {}_A M_{T2A} D\zeta_{D+}$			>0	ļ
$p_T^{miss} {}_B M_{T2A} D\zeta_{B-}$	[40,80]	<40	<-100	†	$p_T^{miss}{}_AM_{T2A+}D\zeta_{A+}$		>40	>-500	ļ
$p_T^{miss} {}_B M_{T2A} D\zeta_E$	[,]		>50	†	$p_T^{miss} {}_B M_{T2A} D\zeta_{B-}$	[40,80]		<-100	ļ
$p_T^{miss} {}_B M_{T2B} D \zeta_{B-}$		[40,80]	<-100	ł	$p_T^{miss} {}_B M_{T2A} D\zeta_E$		<40	>50	ļ
$p_T^{miss} B M_{T2B} D\zeta_{C+}$		[,.]	>-100	†	$p_T^{miss} {}_B M_{T2B} D\zeta_{B-}$		[40,80]	<-100	ļ
$p_T^{miss} {}_B M_{T2C+} D\zeta_{A+}$		>80	>-500	ł	$p_T^{miss} {}_B M_{T2B} D\zeta_{C+}$			>-100	ļ
$p_T^{miss} C M_{T2A} D \zeta_{B-}$	[80,120]	<40	<-100	†	$p_T^{miss} {}_B M_{T2B+} D\zeta_{A+}$	100 1001	>80	>-500	ļ
$p_T^{miss} C M_{T2A} D \zeta_{C+}$	[00,120]		>-100	+	$p_T^{miss} C M_{T2A} D \zeta_{B-}$	[80,120]	<40	<-100	ł
$p_T^{miss} C M_{T2B} D \zeta_{B-}$		[40,80]	<-150	ł	$p_T^{miss} C M_{T2B} D \zeta_{B-}$		[40,80]	<-150	ļ
$p_T^{miss} C M_{T2B} D \zeta_{A+}$		[10,00]	>-150	ł	$p_T^{miss} M_{T2B} D\zeta_{A+}$		[00.100]	>-150	ļ
$p_T^{miss} C M_{T2B+} D \zeta_{A+}$		>80	>-500	$\frac{1}{2}$	$p_T^{miss} C M_{T2} C D \zeta_{A+}$		[80,120]	>-500	ł
$p_T^{miss} D M_{\Gamma 2A} D \zeta_{B-}$	[120,250]	<40	<-100	+	$p_T^{miss} C M_{T2E} D \zeta_{A+}$	[100.050]	>120	>-500	ļ
	[120,250]	<40	>-100	$\frac{1}{2}$	$p_T^{miss} D M_{T2A} D \zeta_{B-}$	[120,250]	<40	<-150	ļ
$p_T^{miss} D M_{T2A} D \zeta_{C+}$		[40 00]	<-150	$\frac{1}{2}$	$p_T^{miss} D M_{T2A} D \zeta_B$			[-150,-100]	ļ
$p_T^{miss} D M_{T2B} D \zeta_{B-}$		[40,80]		ł	$p_T^{miss} D M_{T2A} D \zeta_{C+}$		[40.00]	>-100	ļ
$p_T^{miss} {}_D M_{T2B} D \zeta_B$			[-150,-100]	+	$p_T^{miss} D M_{T2B} D \zeta_{B-}$		[40,80]	<-150	ł
$p_T^{miss} D M_{T2B} D \zeta_{C+}$		F00 4001	>-100	-	$p_T^{miss} D M_{T2B} D \zeta_B$			[-150,-100]	ł
$p_T^{miss} D M_{T2C} D \zeta_{A+}$		[80,100]	>-500	4	$p_T^{miss} D M_{T2B} D \zeta_{C+}$	{	[00 100]	>-100	ł
$p_T^{miss} D M_{T2} D \zeta_{A+}$		[100,120]	>-500	ļ	$\frac{p_T^{miss} D M_{T2C} D \zeta_{A+}}{miss} M D \zeta_{A+}$	{	[80,100]	>-500	ł
$p_T^{miss} D M_{T2E} D \zeta_{A+}$		>120	>-500	1	$\frac{p_T^{miss} D M_{T2D} D \zeta_{A+}}{p_T^{miss} M D \zeta}$	{	[80,120]	>-500	ł
$p_T^{miss} E M_{T2A+} D\zeta_{A+}$	>250	>0	>-500		$p_T^{miss} D M_{T2E} D \zeta_{A+}$	> 250	>120	>-500	ł
					$p_T^{miss} E M_{T2C+} D \zeta_{A+}$	>250	>80	>-500	

Table 9: Definition of combined search bins to be used for easier reinterpretation of the results.

n _{jet}	$p_{\mathrm{T}}^{\mathrm{miss}}$	M_{T2}	Bkg ($e\tau_h$)	Obs. $(e\tau_h)$	Bkg ($\mu \tau_{\rm h}$)	Obs $(\mu \tau_h)$	Bkg (eµ)	Obs (eµ)
0	> 120 GeV	> 120 GeV	$4.9\pm1.5\pm1.9$	4	$5.8\pm1.8\pm2.7$	7.0	$6.8 \pm 2.2 \pm 2.7$	6
1	> 120 GeV	> 100 GeV	$10.8 \pm 2.1 \pm 2.5$	9	$14.4\pm2.5\pm3.1$	14	$9.7\pm2.4\pm3.0$	6
1	> 250 GeV	> 80 GeV	$1.6\pm0.9\pm1.2$	0	$1.5\pm0.9\pm1.1$	1	$3.3\pm2.0\pm2.3$	1

Ilya Bobovnikov

Event yields smuon and selectrons

$p_{\rm T}^{\rm miss}$ [GeV]	100-150	150-225	225-300	300+
FS bkg.	96^{+13}_{-12}	$15.3^{+5.6}_{-4.5}$	$4.4_{-2.3}^{+3.6}$	$1.1^{+2.5}_{-1.0}$
ZZ	13.5 ± 1.5	$9.78 {\pm} 1.19$	$2.84{\pm}0.56$	$1.86 {\pm}~0.12$
WZ	$6.04{\pm}~1.19$	2.69 ± 0.88	$0.86{\pm}0.45$	$0.21{\pm}0.20$
Rare processes	$0.69 {\pm} 0.44$	0.68 ± 0.47	$0.00^{+0.20}_{-0.00}$	$0.05^{+0.12}_{-0.05}$
Total prediction	116^{+13}_{-12}	$28.4^{+5.9}_{-4.8}$	$7.9^{+3.7}_{-2.4}$	$3.2^{+2.6}_{-1.1}$
Data	101	31	7	7
$m_{\tilde{\ell}} = 450 \text{GeV}, m_{\tilde{\chi}_1^0} = 40 \text{GeV}$	0.73±0.08	1.81 ± 0.12	2.39 ± 0.14	6.17±0.23
$m_{\widetilde{\chi}} = 375 \mathrm{GeV}, m_{\widetilde{\chi}_1^0} = 160 \mathrm{GeV}$	2.91±0.19	$6.86{\pm}0.29$	6.06 ± 0.27	5.25 ± 0.26
$m_{\tilde{\chi}} = 250 \text{GeV}, m_{\tilde{\chi}_1^0} = 180 \text{GeV}$	$14.04{\pm}1.02$	$8.59{\pm}0.80$	$0.91 {\pm} 0.26$	0.10 ± 0.10
$m_{\tilde{\ell}} = 100 \text{GeV}, m_{\tilde{\chi}_1^0} = 1 \text{GeV}$	159.07 ± 16.50	30.41 ± 7.26	$12.95{\pm}5.00$	0.00 ± 0.00

