Signatures of heavier electroweakinos at LHC

Nabanita Ganguly

University of Calcutta

Dec 14, 2017

SUSY17, TIFR

Nabanita Ganguly (CU)

Signatures of heavier electroweakinos at LHC

Dec 14, 2017 1 / 24

• Charginos : $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^{\pm}$

• Neutralinos : $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$, $\tilde{\chi}_4^0$

• $\tilde{\chi}_1^0$ is the Lightest Supersymmetric Particle (LSP)

Looking for $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ at LHC Run-I through $3I + \not\!\!\!E_T$ channel

• Mostly signal of $\widetilde{\chi}_1^{\pm}$ and $\widetilde{\chi}_2^0$ is extensively considered

• Larger no. of leptons in final states \longrightarrow reduced SM noise \longrightarrow BETTER SIGNAL !!

- $\widetilde{\chi}_1^0$: Bino-like
- $\widetilde{\chi}_1^{\pm}, \widetilde{\chi}_2^0$: Wino-like
- $\tilde{\chi}_2^{\pm}, \tilde{\chi}_3^0, \tilde{\chi}_4^0$: Higgsino-like
- $\widetilde{\chi_1^{\pm}}$ midway between $\widetilde{\chi}_1^{\pm}$ and $\widetilde{\chi}_1^0$ or heavier than $\widetilde{\chi}_1^{\pm}$
- All heavier eweakinos are decoupled

Exclusion limits from ATLAS at RUN-I

JHEP 1404 (2014) 169 G. Aad *et al.* [ATLAS Collaboration]

Looking beyond simplified model

• Higgsino model : $M_1 < \mu < M_2$

• Mixed model : $M_1 < \mu \sim M_2$

• Compressed model : $M_1 \sim \mu < M_2$

Models - Pictorial representation

What about the heavier eweakinos ??

• Lead to stronger bounds on lighter eweakino masses

• New bounds on masses of $\widetilde{\chi}^{\pm}_2, \widetilde{\chi}^0_4$

• Can lead to novel multilepton signals before next long shutdown

Exclusion contours

JHEP 1711 (2017) 117 M. Chakraborti, A. Datta, S. Poddar, NG

Nabanita Ganguly (CU)

Signatures of heavier electroweakinos at LHC

Parameters/	Benchmark Points			
Masses	BP1	BP2	BP3	BP4
	(Comp)	(LHHS)	(LHLS)	(LMLS)
M_1	191	105	175	296
μ	$\simeq M_1$	-	-	$1.05M_{2}$
M_2	-	1.5μ	1.5μ	566
$m_{\widetilde{\chi}_1^0}$	152	100	170	250
$m_{\widetilde{\chi}_1^\pm}$	178	> 250	> 400	> 590
		(-)	(> 270)	(> 520)
$m_{\widetilde{\chi}^{\pm}_2}$	> 370	_	-	_

크

Collider Search at $\sqrt{S} = 13$ TeV

- - 3 leptons
 - 4 leptons
 - 3 Same Sign and 1 Opposite Sign leptons (SS3OS1)
 - 5 leptons

- We consider all possible production of electroweakinos : $pp \longrightarrow \widetilde{\chi}_i^0 \widetilde{\chi}_j^0, \widetilde{\chi}_i^+ \widetilde{\chi}_j^-, \widetilde{\chi}_i^0 \widetilde{\chi}_j^\pm$
- Event generation, showering and hadronisation performed using PYTHIA

Standard Model Background

Backgrounds coming from SM considered in the analysis :
* ZZ

* WZZ

\star WWZ

* ZZZ

∗ t*τ*Z

Primary selection cuts on final state particles for both signal and background :

• Leptons (e and μ) with $P_T > 10$ GeV and $|\eta| < 2.5$

• Jets with $P_T > 20$ GeV and $|\eta| < 2.5$

• Isolation cuts on leptons following ATLAS

• C1: Events with 3 isolated leptons are selected

• C2: Events with 81.2 GeV $< m_{SFOS} <$ 101.2 GeV are rejected

• C3: $\not\!\!\!E_T > 200 \text{ GeV}$

• C1: Events with 4 isolated leptons are selected

• C2: Events with 81.2 GeV $< m_{SFOS} <$ 101.2 GeV are rejected

• C3: ∉_T > 80 GeV

• C1: Events with 4 isolated leptons are selected

• C2: Total charge of final state leptons are non-zero

• C3: $\not\!\!\!E_T > 80~{\rm GeV}$

• C1: Events with 5 isolated leptons are selected

• C2: $\not\!\!E_T > 80 \text{ GeV}$

Parameters/	Benchmark Points		
Masses	BP1	BP4	BP6
	(Comp)	(LHHS)	(LHLS)
M_1	186	105	249
μ	190	270	300
M_2	350	405	450
$m_{\widetilde{\chi}_1^0}$	150	100	230
$m_{\widetilde{\chi}_1^\pm}$	180	260	290
$m_{\widetilde{\chi}^{\pm}_2}$	390	450	490

Parameters/	Benchmark Points		
Masses	BP3-DM	BP1-DM	BP1-DM
	(Comp)	(LHHS)	(LHLS)
M_1	116	200	277
μ	121.8	266	328
M_2	666	399	492
$m_{\widetilde{\chi}_1^0}$	87	186	258
$m_{\widetilde{\chi}_1^\pm}$	123	255	320
$m_{\widetilde{\chi}^\pm_2}$	700	440	530

Multi-Lepton Signals

Types of	Benchmark Points		
Signal	BP1	BP4	BP6
	(Comp)	(LHHS)	(LHLS)
$(S/\sqrt{B})_{3I}$	14.3	13.6	26.9
	(3.4)	(3.1)	(4.2)
4 leptons	61.5	16.4	19.6
	(0.69)	(0.62)	(2.1)
SS3OS1 leptons	29.9	7.2	5.1
	(0.69)	(-)	(0.17)
5 leptons	8.46	6.1	4.14
	(-)	(-)	(-)

 $L = 100 fb^{-1}$

Types of	Benchmark Points		
Signal	BP3-DM	BP1-DM	BP1-DM
	(Comp)	(LHHS)	(LHLS)
$(S/\sqrt{B})_{3I}$	6.4	6.7	18.6
4 leptons	14.1	18.5	13.8
SS3OS1 leptons	5.63	3.34	2.88
5 leptons	2.81	4.1	3.64

 $L = 100 fb^{-1}$

Sample Exclusion Contours at RUN-II

Figure: Compressed

Figure: LHLS

- Various SUSY scenarios in MSSM framework are considered with non-decoupled heavier eweakinos
- New bounds on $m_{\widetilde{\chi}_2^\pm}, m_{\widetilde{\chi}_4^0}$ are obtained
- Stronger bounds on masses of lighter eweakinos are calculated for non-decoupled $\widetilde{\chi}^\pm_2, \widetilde{\chi}^0_4$
- Inclusion of heavier eweakinos gives better multilepton signal strength

The work is done in collaboration with A. Datta, S. Poddar and M. Chakraborti :

• Phys. Lett. B763, 213-217 (2016)

```
• JHEP 1711 (2017) 117
```

THANK YOU!