Aspects of the same-sign diboson signature from wino pair production in natural SUSY at LHC

Dibyashree Sengupta

University of Oklahoma

In collaboration with: H.Baer, V.Barger, J.Gainer, M.Savoy and X.Tata

arXiv: 1710.09103

Dec 14, 2017

Overview

- Introduction
- 2 Model Selection
 - Radiatively- driven Natural SUSY
- 3 Event Generation and Analysis
 - SUSY Signal
 - SM Background
- Selection of Cuts
- Mass reach of Wino
 - Via Counting
 - Via Charge Asymmetry
 - Via Fits to Distribution
- 6 Simplified model for SSdB discovery
- Conclusion

Introduction

- Standard Model(SM) has certain drawbacks like fine tuning in Higgs Mass, inability to explain Dark Matter etc.
- Supersymmetry or SUSY is a highly motivated extension of SM where quadratic divergences are neatly cancelled and is also supported indirectly by experimentally obtained values of gauge couplings, m_t , m_h .
- Each Standard Model particle has a Superpartner whose spin vary by 1/2 with respect to its corresponding SM particle.
- Superpartner of a boson (fermion) is a fermion (boson)
- But **no** sparticles have been seen in LHC yet.

Introduction

- Standard Model(SM) has certain drawbacks like fine tuning in Higgs Mass, inability to explain Dark Matter etc.
- Supersymmetry or SUSY is a highly motivated extension of SM where quadratic divergences are neatly cancelled and is also supported indirectly by experimentally obtained values of gauge couplings, m_t , m_h .
- Each Standard Model particle has a Superpartner whose spin vary by 1/2 with respect to its corresponding SM particle.
- Superpartner of a boson (fermion) is a fermion (boson)
- But **no** sparticles have been seen in LHC yet.

Is SUSY Unnatural?

Introduction

- Standard Model(SM) has certain drawbacks like fine tuning in Higgs Mass, inability to explain Dark Matter etc.
- Supersymmetry or SUSY is a highly motivated extension of SM where quadratic divergences are neatly cancelled and is also supported indirectly by experimentally obtained values of gauge couplings, m_t , m_h .
- Each Standard Model particle has a *Superpartner* whose spin vary by 1/2 with respect to its corresponding SM particle.
- Superpartner of a boson (fermion) is a fermion (boson)
- But no sparticles have been seen in LHC yet.

Is SUSY Unnatural?

 However, There are Supersymmetric models which are radiatively-driven natural and also respect LHC sparticle and Higgs mass constraints. One such Radiatively- driven Natural SUSY (RNS) model is the two-extra-parameter non-universal Higgs model (NUHM2) which we have used with parameters as follows:

 $m_0 = 5 \text{ TeV}$, $A_0 = -1.6 m_0$, $tan\beta = 10$, $m_A = 1500 \text{ GeV}$, $\mu = 150 \text{ GeV}$ $m_{1/2} = 800 \text{ GeV}$

This spectrum has $\tilde{m_g} = 2007.40$ GeV, $\tilde{m_{t1}} = 1470.30$ GeV, $m_h = 124.38$ GeV and $\Delta_{FW} = 9.3$ for just 10.75% finetuning.

The Electroweak fine-tuning parameter (Δ_{EW}) is defined as

$$\Delta_{EW} = \max_i |C_i|/(M_Z^2/2) \tag{1}$$

Where, C_i is any one of the parameters on the RHS of the following equation:

$$\frac{M_Z^2}{2} \approx -m_{H_u}^2 - \mu^2 - \Sigma_u^u(\tilde{t}_{1,2})$$
 (2)

4 / 24

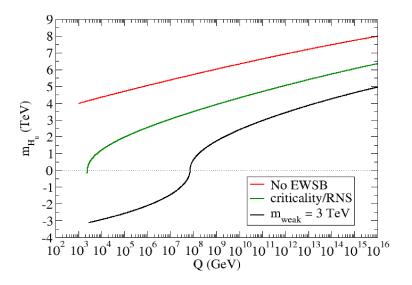


FIG 1: Evolution of the term $sign(m_{H_u}^2)\sqrt{m_{H_u}^2}$ for the case of *No EWSB*, criticality as in *RNS* and $m_{weak}=3$ TeV as in arXiv:1602.07697

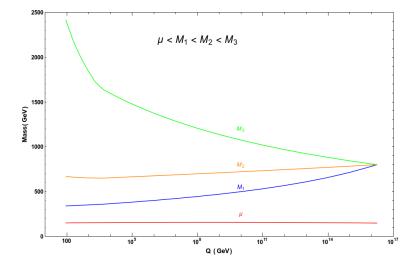


FIG 2

This hierarchy leads to a novel, rather clean same-sign diboson signature from wino pair production at hadron colliders.

Signal Process

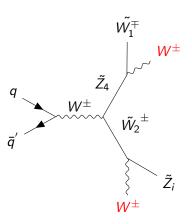


FIG 3 : Same-sign diboson production at LHC in SUSY models with light higgsinos.Here, \tilde{Z}_4 and \tilde{W}_2^{\pm} in the intermediate step are winos and \tilde{W}_1^{\mp} and \tilde{Z}_i in the final step are light higgsinos.

SM Background

- $t\bar{t}$
- W[±]Z
- t̄tW[±]
- t̄tZ
- $W^{\pm}W^{\pm}W^{\mp}$
- $t\bar{t}t\bar{t}$
- $W^{\pm}W^{\pm}jj$

NLO contribution in signal from prospino

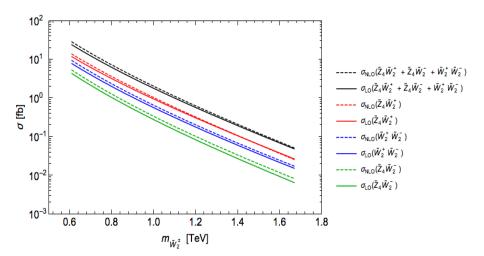


FIG 4

C1-Cuts:

- \bullet Exactly two same-sign isolated leptons with pTL1 > 20 GeV and pTL2 > 10 GeV
- Number of b-jets = 0
- Missing Transverse Energy > 200 GeV
- Minimum Transverse Mass > 175 GeV

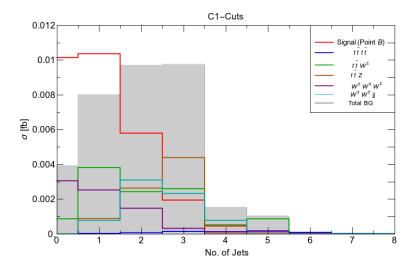


FIG 5 : Jet Multiplicity Distribution for the signal and SM Backgrounds after C1 cuts. (Hence, we require njets ≤ 1)

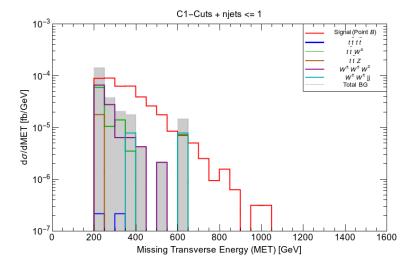


FIG 6 : Missing Transverse Energy distribution for the signal and SM Backgrounds after C1 cuts+ njets <=1 . (Hence, we require MET > 250 GeV)

C2-Cuts:

- \bullet Exactly two same-sign isolated leptons with pTL1 > 20 GeV and pTL2 > 10 GeV
- Number of b-jets = 0
- Missing Transverse Energy > 250 GeV
- Minimum Transverse Mass > 175 GeV
- Number of jets <= 1

Cut-Flow Table

Sigma (in ab)			
Process	$\sigma(NLO)$	C1-cuts	C2-cuts
$Signal(m_{1/2} = 800\;GeV)$	$1.55 \cdot 10^4$	28.8	16.1
t t	$9.5 \cdot 10^{8}$	0	0
$W^{\pm}Z$	$5.2 \cdot 10^{7}$	0	0
$tar{t}W^{\pm}$	$5.2 \cdot 10^5$	11.1	1.73
t Ī Z	$8.8 \cdot 10^{5}$	7.9	0
$W^{\pm}W^{\pm}W^{\mp}$	$3.2 \cdot 10^{5}$	7.5	2.3
tītī	$1.1 \cdot 10^4$	0.6	0.011
$W^{\pm}W^{\pm}jj$	$3.9 \cdot 10^{5}$	7.0	0.8
Total BG	$1.0065 \cdot 10^9$	34.1	4.83

The Signal has been adjusted to include the NLO contribution as well according to the prospino result.

The Background processes include k-factors as obtained from literature and verified using MCFM.

Direct Event Counting

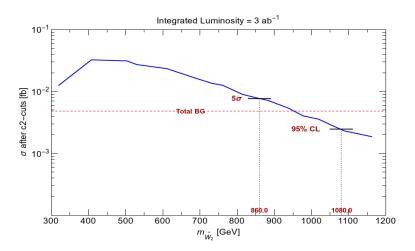


FIG 7 : Production cross-section of $\tilde{W}_2\tilde{W}_2+\tilde{W}_2\tilde{Z}_4$ vs Mass of wino.

Charge Asymmetry

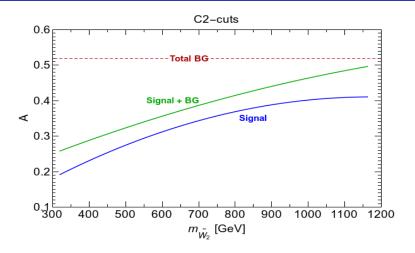


FIG 8 : Same-Sign Diboson Charge Asymmetry vs Mass of wino $m_{\tilde{W}_2}$, with Charge Asymmetry $A = \frac{\sigma(++) - \sigma(--)}{\sigma(-+) + \sigma(--)}$.

Fits to Distribution

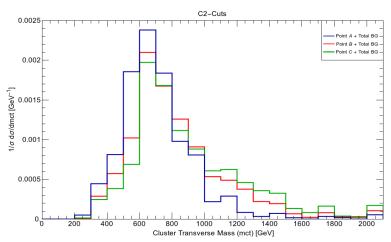


FIG 9: Distribution in Cluster Transverse Mass for three signal benchmark points and summed SM backgrounds in SSdB production after C2 cuts.

 $m_{\tilde{W}_2} \approx 530 \text{ GeV}$; $m_{\tilde{W}_2} \approx 692 \text{ GeV}$; $m_{\tilde{W}_2} \approx 884 \text{ GeV}$

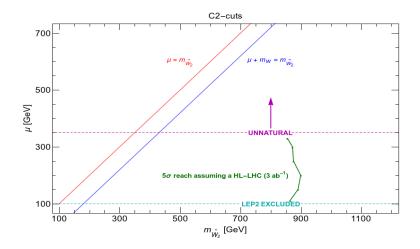


FIG 10 : Simplified model for SSdB discovery in the $\textit{m}_{\tilde{W}_{2}}$ vs μ plane.

Conclusion

- In this project we have used a radiatively-driven natural Supersymmetric Model with light higgsino, thereby giving rise to a clean same-sign diboson signal from wino pair production.
- Certain cuts have been selected in order to efficiently reduce the background so that the signal is clean enough to be detected experimentally.
- For an integrated luminosity of 3000 fb^{-1} this Same-Sign diboson signal should be observable at LHC14 for wino mass upto 860 GeV.
- Assuming gaugino mass unification, this result is consistent with the gluino mass reach (\approx 2.8 TeV) in the paper arXiv : 1612.00795 (H.Baer *et.al.*)
- We recommend to extract the wino mass through three different channels: Event Counting, Charge Asymmetry, Fits to Distribution. Thus we can have a better measurement and consistency check of the Wino mass.

THANK YOU

QUESTIONS?

Back Up Slides

Δ_{EW} , Δ_{HS} , Δ_{BG}

$$\mathcal{O} = \mathcal{O} + b - b$$

When evaluating fine-tuning, it is not permissible to claim fine-tuning of dependent quantities one against another.

Δ_{EW} , Δ_{HS} , Δ_{BG}

$$\mathcal{O} = \mathcal{O} + b - b$$

When evaluating fine-tuning, it is not permissible to claim fine-tuning of dependent quantities one against another.

The Electroweak Measure Δ_{EW}

$$\frac{m_Z^2}{2} = \frac{(m_{H_d}^2 + \Sigma_d^d) - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{(\tan^2 \beta - 1)} - \mu^2$$
 (3)

$$\approx -m_{H_u}^2 - \mu^2 - \Sigma_u^u(\tilde{t}_{1,2}) \tag{4}$$

Δ_{EW} , Δ_{HS} , Δ_{BG}

$$\mathcal{O} = \mathcal{O} + b - b$$

When evaluating fine-tuning, it is not permissible to claim fine-tuning of dependent quantities one against another.

The Electroweak Measure Δ_{EW}

$$\frac{m_Z^2}{2} = \frac{(m_{H_d}^2 + \Sigma_d^d) - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{(\tan^2 \beta - 1)} - \mu^2$$
 (3)

$$\approx -m_{H_u}^2 - \mu^2 - \Sigma_u^u(\tilde{t}_{1,2}) \tag{4}$$

Sensitivity to High Scale Parameters Δ_{BG}

$$m_Z^2 \approx -2m_{H_u}^2 - 2\mu^2 \tag{5}$$

The Large Log Measure Δ_{HS}

$$m_h^2 \approx \mu^2 + m_{H_u}^2(\Lambda) + \delta m_{H_u}^2 \tag{6}$$

where Λ is a high energy scale up to which MSSM is valid. Λ can be as high as m_{GUT} or even m_P .

The Large Log Measure Δ_{HS}

$$m_h^2 \approx \mu^2 + m_{H_u}^2(\Lambda) + \delta m_{H_u}^2 \tag{6}$$

where Λ is a high energy scale up to which MSSM is valid. Λ can be as high as m_{GUT} or even m_P .

A simple fix for Δ_{HS} is to regroup the dependent terms as follows :

$$m_h^2 \approx \mu^2 + (m_{H_u}^2(\Lambda) + \delta m_{H_u}^2) \tag{7}$$

This regrouping now leads back to Δ_{EW} measure because now $(m_{H_u}^2(\Lambda) + \delta m_{H_u}^2) = m_{H_u}^2(Weak)$.

Dibyashree Sengupta (OU)