

Theory of inclusive and exclusive radiative B decays

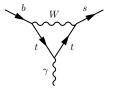
Gil Paz

Department of Physics and Astronomy, Wayne State University

Comment

• Recently I contributed to Belle II Theory interface Platform (B2TiP) report

Radiative and Electroweak Penguin B Decays chapter Authors: T. Feldmann, U. Haisch, M. Misiak, GP, E. Kou, R. Zwicky


This influenced this talk

Outline

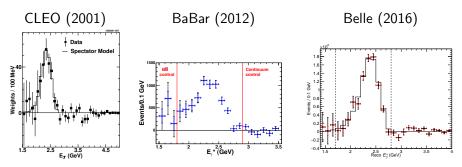
- The Big picture
- Inclusive $\bar{B} \rightarrow X_q \gamma$
- Exclusive $b \rightarrow q\gamma$
- Conclusions

The Big picture

- Radiative B decays are... an important probe of New Physics
- $b \rightarrow s\gamma$ is a flavor changing neutral current (FCNC) In SM no FCNC at tree level, arises as a loop effect:

- $b \rightarrow s\gamma$ can have contribution from new physics e.g. SUSY (only one diagram shown):

- Radiative B decays constrain many models of new physics


- Radiative B decays are... theoretically clean
- Since 5 GeV $\sim m_b \gg \Lambda_{\rm QCD} \sim 0.5$ GeV

Observables expanded as a power series in $\Lambda_{\rm QCD}/m_b \sim 0.1$

•
$$\Gamma_{77}(ar{B} o X_q \gamma)$$
 known to $\Lambda_{ extsf{QCD}}^5/m_b^5$

• Allows to control non-perturbative effects

- Radiative B decays are... theoretically interesting
- Test of basic QFT tools
- Factorization theorems
- Operator product expansion
- Window to non-perturbative physics, e.g.

• At leading twist the photon spectrum is the B-meson pdf

• Radiative B decays have... large impact

- CLEO top cited papers: #1 ($\bar{B} \rightarrow X_s \gamma$ '95), #2 (CLEO-II detector) #3 ($\bar{B} \rightarrow K^* \gamma$ '93), #4 ($\bar{B} \rightarrow X_s \gamma$ '01)
- Belle top cited papers: #4 ($\bar{B} \rightarrow X_s \gamma$ '01)
- BaBar top cited papers: #21 ($\bar{B}
 ightarrow X_{s} \ell^{+} \ell^{-}$ '04)
- Theoretical predictions: hundreds of citations

Themes

- Interplay of perturbative (short distance) and non-perturbative (long distance) physics
- Asymmetries:
- Isospin asymmetries $(\bar{B} o X_s \gamma, \bar{B} o K^* \gamma, \bar{B} o
 ho \gamma)$
- CP asymmetries $(\bar{B} \to X_s \gamma, \bar{B} \to K^* \gamma, \bar{B} \to \rho \gamma)$ and even
- Isospin difference of CP asymmetries
 [Benzke, Lee, Neubert GP, PRL 106, 141801 (2011);
 BaBar PRD 90, 092001 (2014)]

Perturbative and Non-perturbative

• The perturbative physics is described by the effective Hamiltonian

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_p \left(C_1 Q_1^p + C_2 Q_2^p + \sum_{i=3,\dots,10} C_i Q_i + C_{7\gamma} Q_{7\gamma} + C_{8g} Q_{8g} \right)$$

- Most important: $Q_{7\gamma}, Q_{8g},$ and Q_1

$$\begin{array}{lll} Q_{7\gamma} &=& \displaystyle \frac{-e}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} (1+\gamma_5) F^{\mu\nu} b \\ Q_{8g} &=& \displaystyle \frac{-g_s}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} (1+\gamma_5) G^{\mu\nu} b \\ Q_1^q &=& \displaystyle (\bar{q}b)_{V-A} (\bar{s}q)_{V-A} \quad (q=u,c) \end{array}$$

- C_i known at NNLO

• Non-perturbative effects arise at Λ_{QCD}/m_b

Inclusive $\bar{B} \to X_q \gamma$

$\bar{B} \rightarrow X_q \gamma$

- Theoretical predictions
- Br $(ar{B}
 ightarrow X_s \gamma) = (3.36 \pm 0.23) imes 10^{-4}$
- $Br(\bar{B} \to X_d \gamma) = (1.73^{+0.12}_{-0.22}) \times 10^{-5}$ [Misiak *et al.*, PRL **114**, 221801 (2015)]
- Experimental values
- Br $(ar{B} o X_s \gamma) = (3.43 \pm 0.21 \pm 0.07) imes 10^{-4}$

[Heavy Flavor Averaging Group, arXiv:1412.7515 [hep-ex]]

- Br $(ar{B}
ightarrow X_d \gamma) = (1.41 \pm 0.57) imes 10^{-5}$

[BaBar PRD 82, 051101 (2010);

Misiak et al., PRL 114, 221801 (2015)]

Extrapolated to $E_{\gamma} > 1.6~{
m GeV}$

$\Gamma(\bar{B} \to X_s \gamma)$: Perturbative

- At leading power in Λ_{QCD}/m_b $\Gamma(\bar{B} \to X_s \gamma) = \Gamma(b \to s \gamma)$
- Since $\Gamma \propto |\mathcal{H}_{eff}|^2,$ need pairs of operators
- $\mathit{Q}_{7\gamma} \mathit{Q}_{7\gamma}$ known at NNLO
- $\mathit{Q}_{8\gamma} \mathit{Q}_{8\gamma}$ known at NNLO
- $Q_{1,2}-Q_{7\gamma}$ known at NNLO for two m_c limits
- Interpolation in m_c leads to $\pm 3\%$ perturbative uncertainty
- Future improvement requires calculation at physical *m_c* (challenging)

$\Gamma(\bar{B} \to X_s \gamma)$: Non-perturbative

• $Q_{7\gamma} - Q_{7\gamma}$ obeys local OPE

$$\Gamma_{77} = \sum_{n=0}^{\infty} \frac{1}{m_b^n} \sum_k c_{k,n} \langle O_{k,n} \rangle$$

- $c_{k,n}$ are Wilson coefficients: perturbative
- $\langle O_{k,n} \rangle$ are matrix elements of HQET operators: non-perturbative
- Current status
- n = 0 free quark
- n = 1 vanishes
- $c_{k,2}$ known at $\mathcal{O}(\alpha_s)$ [Ewerth, Gambino, Nandi, NPB **830** 278 (2010)]
- $c_{k,\{3,4,5\}}$ known at $\mathcal{O}(\alpha_s^0)$, but $\langle O_{k,n} \rangle$ not well known [Gambino, Healey, Turczyk PLB **763**, 60 (2016)]

 $\Gamma(\bar{B} \to X_s \gamma)$: Non-perturbative

- $Q_{7\gamma} Q_{7\gamma}$ obeys local OPE
- Other operators are more complicated lead to resolved photon contributions, e.g.
- $Q_{8g} \Rightarrow b \rightarrow sg \rightarrow s\bar{q}q\gamma$
- $Q_1 \Rightarrow b \rightarrow s\bar{c}c \rightarrow sg\gamma$ [Benzke, Lee, Neubert GP, JHEP **08** 099 (2010); GP CKM 2010 talk]
- For rate $\Gamma \sim \bar{J} \otimes h$
- \overline{J} perturbative
- h non-perturbative: modeled or extract from (future) data
- At Λ_{QCD}/m_b contribution from $Q_1 - Q_{7\gamma}, Q_{7\gamma} - Q_{8g}, Q_{8g} - Q_{8g}$ Total uncertainty 5% (largest)

$\Gamma(\bar{B} \to X_s \gamma)$: Non-perturbative

- At Λ_{QCD}/m_b contribution from $Q_1 - Q_{7\gamma}, Q_{7\gamma} - Q_{8g}, Q_{8g} - Q_{8g}$ Total uncertainty 5% (largest)
- Improvements:
- Knowledge of $\langle \mathcal{O}_{k,n}
 angle \Rightarrow$ improve $\mathcal{Q}_1 \mathcal{Q}_{7\gamma}$
- Isospin asymmetry between B^+ and $ar{B}^0 \Rightarrow$ improve $Q_{7\gamma}-Q_{8g}$

Data driven!

$\Gamma(ar{B} ightarrow X_s \gamma)$: CP asymmetry

- Resolved photon contributions affect CP asymmetry Change $\sim 0.5\%$ from perturbative effects to [-0.6%, 2.8%] [Benzke, Lee, Neubert GP, PRL **106**, 141801 (2011); GP CKM 2012 talk]
- New physics test: isospin difference of CP asymmetries: ΔA_{CP} [Benzke, Lee, Neubert GP, PRL **106**, 141801 (2011); GP CKM 2012 talk]
- BaBar measurement $\Delta A_{CP} = +(5.0 \pm 3.9 \pm 1.5)\%$ Also constrain Im $C_{8g}/C_{7\gamma}$:

$$-1.64 \le \operatorname{Im} C_{8g} / C_{7\gamma} \le 6.52, \quad 90\% CL$$

[BaBar PRD 90, 092001 (2014)]

$\Gamma(\bar{B} o X_s \gamma)$: Photon spectrum

- Resolved photon effects for spectrum not known numerically relevant for HQET parameters and $|V_{cb}|$ and $|V_{ub}|$
- Comparison between theory and experiment relays on extrapolation from measured $E_{\gamma} \sim 1.9$ GeV to $E_{\gamma} > 1.6$ GeV The issue of extrapolation should be revisited
- Both can benefit from detailed E_{γ} cut effects

Exclusive $ar{b} ightarrow q \gamma$

Exclusive $\bar{b} \rightarrow q\gamma$

Decays such as

- $b \rightarrow s\gamma : B_{(q,s)} \rightarrow (K^*, \phi)\gamma$
- $b \rightarrow d\gamma : B_{(q,s)} \rightarrow (\rho/\omega, \bar{K}^*)\gamma$
- Combination of Short Distance (SD) effects from Q_{7γ} (still requires B → V form factors) and Long Distance (LD) effects from other operators
- Look at ratios and asymmetries to reduce hadronic uncertainties

Ratios

•
$$Br(B \to K^*\gamma)/Br(B_s \to \phi\gamma)$$

• SM prediction

$$R^{ ext{SM}}_{K^*\gamma/\phi\gamma}=0.78\pm0.18$$

[Lyon, Zwicky, PRD 88 094004 (2013) updated in B2TiP report]

LHCb measurement

$$R_{K^*\gamma/\phi\gamma}^{\exp} = 1.23 \pm 0.12$$

[LHCb PRD 85 112013 (2012); LHCb NPB 867 1 (2013)]

Isospin asymmetries

• SM prediction

$$ar{a}_I^{{
m SM}}(K^*\gamma) = (4.9\pm2.6)\% \ ar{a}_I^{{
m SM}}(
ho\gamma) = (5.2\pm2.8)\%$$

[Lyon, Zwicky, PRD 88 094004 (2013)]

• Experimental measurement

$$ar{a}_I^{ ext{exp}}(K^*\gamma) = (5.2 \pm 2.6)\% \ ar{a}_I^{ ext{exp}}(
ho\gamma) = (30^{+16}_{-13})\%$$

[Heavy Flavor Averaging Group, arXiv:1207.1158 [hep-ex]]

CP asymmetries

• Time dependent CP asymmetries

SD only

$$\begin{split} S^{\text{SM, SD}}_{\mathcal{K}^*(\mathcal{K}_s\pi^0)\gamma} &= -2\frac{m_s}{m_b}\sin 2\phi_1 \\ S^{\text{SM, SD}}_{\rho^0(\pi^+\pi^-)\gamma} &= 0 \end{split}$$

Including LD effects

$$egin{array}{rcl} S^{ ext{SM}}_{K^*(K_s\pi^0)\gamma} &=& -(2.3\pm1.6)\% \ S^{ ext{SM}}_{
ho^0(\pi^+\pi^-)\gamma} &=& (0.2\pm1.6)\% \end{array}$$

[Ball,Zwicky PLB **642** 478 (2006); Ball, Jones, Zwicky PRD **75** 054004 (2007)]

Gil Paz (Wayne State University)

Photon Helicity

- Photon can have two helicities in $B
 ightarrow V \gamma$
- Photon helicity sensitive to right handed new physics
- LHCb observed up-down asymmetry proportional to the photon polarization in B[±] → K[±]π[∓]π[±]γ
 [LHCb, PRL 112, 161801 (2014)]
- ".. the values for the up-down asymmetry, may be used, if theoretical predictions become available, to determine for the first time a value for the photon polarization, and thus constrain the effects of physics beyond the SM in the b → sγ sector"
 [LHCb, PRL 112, 161801 (2014)]
- See also Kou's talk at CKM 2014

Conclusions

Conclusions

- Other radiative decays: $B
 ightarrow \gamma \gamma$, $B
 ightarrow X_q \gamma \gamma$
- Radiative B decays have rich structure
 Show intricate interplay of perturbative and non-perturbative physics
- The theory is mature, but there is still room for improvements
- LHCb and soon Belle II will motivate further theoretical work

• Thank you!