Simulating CZT detector response in GEANT4

Sujay Mate TIFR Mumbai

Basics of X-ray attenuation

Figure: Helmuth Spieler (Lawrence Berkeley Laboratory)

mass attenuation coefficient =
$$\frac{\mu}{\rho}$$
 cm²/g

Figures: Radiation Detection and Measurement, Glen F. Knoll

Cadmium Zinc Telluride (Cd_{0.9}Zn_{0.1}Te) detectors

- Most common hard x-ray / soft gamma-ray detectors.
- Good efficiency in $\sim 15 300$ keV.
- Possible to achieve position sensitivity.
- Compact in size + operating temperature ~ few °C.

Swift/BAT

NuSTAR

AstroSat/CZTI

CZT detection efficiency

Typical spectral response of CZT detector

Figure: AstroSAT/CZTI team

What can GEANT model?

Not modeled by GEANT4

• Energy resolution.

• Charge transport and trapping

• Electronic noise

Coded mask imaging

What happens if you put a mask in front?

Thank you