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What can you expect from
the Lectures

Lecture 1: Basic Concepts
Histograms, PDF, Testing Hypotheses,
LR as a Test Statistics, p-vralue, POWER, CLs
Measurements

Lecture 2: Feldman-Cousins, Wald Theorem,
N Asymptotic Formalism, Asimov- Data Set, PL & CLs

Lecture 3: Asimov- Significance
. Look Elsewhere Effect
1D LEE the non-intuitiv-e thumb rule
(upcrossings, trial #~2)
2D LEE (Euler Characteristic)

—————
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Preliminaries




"In a Nut Shell

The binomial distribution with parameters n and p

is

the discrete probability distribution of the number of
successes in a sequence of n independent experiments,

(Wikipedia)
n \ k n—k
P(k:n,p)= p (1-p)
k)
f X ~ B(n, p)
E|X]=np
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0iss(k; L) =
If X ~ Poiss(k; ) |
E[X]=Var[X]=A1
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From Binomial to Poisson to Gaussian
P(k:n,p)=£ Z ]p"(l—p)""

Afe ™™
k!

Pk :n, p)—2==2=2 s Poiss(k; 1) =

<k>:l’ Gk:\/I
k—>oco=x=k

Using Stirling Formula

1 -
prOb(X)=G(X,G — \/I) — —(x=A1)" 20

e
N2Tmo

This is a Gaussian, or Normal distribution

with mean and variance of A
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Histograms

N collisions

Lo(pp— H) Ae,
Lo(pp)
obs

Prob to see n,;” in N collisions is

p(Higgs event) =

N obs _j0bs
P(n,i,’”){ | obs ]p”f’ (1-p)* "

H
. obs . obs e * /l nglbs v w W oo "
lim,,_, P(ny")= Poiss(ny* ,A) = —— mass
n, !
Lo(pp — H) Ac
A=Np=Lo(pp) P A ny'

Lo(pp)
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/]Mdf

Xisarandom \rariable

Probability Distribution Function

PDF

Plx € |z, z +dx|) =

- =04F

/ f (I‘)dI =1 ’ 0.35 E—
f(x) is not a probability 025F
F(x)dx is a probability. 02E
015

G(x|p, o) DaE
s a parametrized pdf ([, ) °F

o B
-3 - -
We would like to make inference about the parameters
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~ . .
A counting experiment

» The Higgs hypothesis is that of signal s(m )
s(m,)=Lo -A-e€
For simplicity anless otheruise noted s(m,)=Lo,,

o In a counting experiment n=us(m, )+b

Lo-obs (mH) — Gobs(mH)

‘L[:
Lo, (my) O, (m,)

o uis the strength of the signal (with respect to the expected
Standard Model one)

o The hypotheses are therefore denoted by H

o H,is the SM with a Higgs, H, is the background only model
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" A Tale of Two Hy.potheses

NULL ALTERNATE

» Test the Null hypothesis and try to reject it

o Fail to reject it OR reject it in fav-or of the
alternativ-e hypothesis

E'.E‘.';;g 17 Il E I . . . .
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" A Tale of Two Hy.potheses :

NULL

ALTERNATE

H,- SM with Higgs

» Test the Null hypothesis and try to reject it

o Fail to reject it OR reject it in fav-or of the
alternativ-e hypothesis
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\
A Tale of Two Hy.potheses
NULL ALTERNATE
Ho- SM w/o0 Higgs H,- SM with Higgs
o Reject H, in fav-or of H, - A DISCOVERY
We quantify rejection by p-vralue (later)
a'_ % Eilam Gross Statistics in PP Jan 2018 /




4 R
Swapping Hy.potheses>exclusion

NULL

ALTERNATE

H,- SM with Higgs

o Reject H, in fav-or of H,

Excluding H, (m,)>Excluding the Higgs
with @ mass m,

We quantify rejection by p-vralue (later)

w % Eilam Gross Statistics in PP Jan 2018 /




O er e
Likelihood
Likelihood is the

compatibility of the
Hy.pothesis with a giv-en
data set.

But it depends on the
data

Likelihood is not the
probability of the
hy.pothesis giv-en the
data

FEHTRY . H i
i % Eilam Gross Statistics in PP
R i UF

L(H)=L(H|x)
L(H|x)=P(x|H)

Bayes Theorem

pei | x) = PO H)-PUH)

> P(x|H)P(H)

P(H |x)~ P(x| H)- P(H)
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/Frequentist Vs Bay.esian

« The Bayesian infers from the data using priors
posterior P(H|X) ~ P(X| H). ,D(H)

e Priorsis a science on its own.
Are they objectiv-e? Are they subjectiv-e?

o The Frequentist calculates the
probability of an hypothesis to
be inferred from the data based
on a large set of hypothetical experiments
Ideally, the frequentist does not need priors, or any
degree of belief while the Baseian posterior based inference is
a “Degree of Belief”.

e However, NPs (Systematic) inject a Bayesian flav-our to any
Frequentist analysis

i % Eilam Gross Statistics in PP Jan 2018 /
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/,Likelihood is NOT o PDF

A Poisson distribution describes

o discrete event count n for I \' / S
arealvalued Meys. - / .
6| | / 'C)

. | ek R ]
Pois(n|p) = p T sE / -
R /=2 In L{ne=3 1 ) }

Say, we observe n_ events e e —
N / ]

What is the likelihood of u? 5 i\
The likelihood of u is given by [ ]

20 i i}
L(w)=Poig(n_[u) I ]
It is a continues function 1 B i
of u butitis NOT a PDF 05— &% 9 1z 5

Me

Figure from R. Cousins,

e (1) Am. J. Phys. 63 398 (1995)
g ‘ ;ﬁ’j‘ Eilam Gross Statistics in PP Jan 2uie /




4 : ,
Testing an Hypothesis (uikipedia...)

o The first step in any hypothesis test is to state the relev-ant
null, H, and alternativ-e hypotheses, say, H,

» The next step is to define a test statistic, q, under the null
hypothesis

« Compute from the observ-ations the observ-ed v-alue q , of the
test statistic q.

. Decide (based on q , ) to either

Fail to reject the null hypothesis or
reject it in fav-or of an alternativ-e hypothesis

o next: How to construct a test statistic, how to decide?

ISPl =21 Eilam Gross Statistics in PP Jan 2018
e o VP

™~

/




Test statistic and p-v-alue
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Case Study 1: Spin




Spin O \rs Spin 1 Hy.potheses

PD
0.40
Null Hypothesis H, = Spin 0
~ Alt Hypothesis H = Spin 1
0.35"

J=0 J=1

0.30

0.25;




/Sp'm O vs Spin 1 Hypotheses

N avents
150 Null Hypothesis H = Spin 0
Alt Hypothesis H, = Spin 1
100




/Sp'm O vs Spin 1 Hypotheses

N events
150 Null Hypothesis H = Spin 0
Alt Hypothesis H, = Spin 1
100




s .
Spin O vs Spin 1 Hypotheses

N avents
150

Null Hypothesis H, = Spin 0
Alt Hypothesis H, = Spin 1

100




4 ™
The Neyman-Pearson Lemma

L(H)
L(H,)
o When performing a hypothesis test between two
simple hypotheses, H, and H,, O
the Likelihood Ratio test, A = (1)
L(H,)

which rejects H, in fav-or of H,,

is the most powerful test
for a giv-en significance lev-el o= prob(A<n)
with a threshold n

o Define a test statistic )\ =

;,s*v;;;‘ gn;,;;:v;] Eilam Gross Statistics in PP Jan 2018 /




"Building PDF

Build the pdf of the test statistic

Anp = qNP(x) = _2lni§11:11—(1)||;3
N experiments
1.0
0.8}
0.6;
0.4/
0.2}
- 10 -5 0 5 10 15 cosllO)

N events

150

100}

06 10 15

20 25 30




"Building PDF

Build the pdf of the test statistic
L(H,|x)
L(H, |x)

Gyp = qNP(x) =—21In

N experiments

100
80.
60

40

20

0




4 : oy h
Basic Definitions: type I-ll errors
o By defining x you determine your

tolerance towards mistakes...
(accepted mistakes frequency.) o The pdf of q....

o type-lerror: the probability to ;A
reject the tested (null) hypothesi foA
(Ho) when it is true b

. o =Prob(rejectH,| H,) Fod
o = typel error L

» Typell: The probability to accept x \
null hypothesis when it is wrong | ‘\

P =Prob(accept H, |HO) ~— r

B =typell error Y ‘:ﬁﬂhh?o 5

o=significance 1-B

‘-“‘i 42 3 . . . .
9 A n:%’% Eilam Gross Statistics in PP




* o =Prob(rejectH, | H,)

The POWER of an hypothesis

test is the probability to reject

the null hypothesis when it is indeed
wrong

(the alternate analysis is true)

. POWER="Prob(reject H,|H,)
p = Prob(accept H, | H,)
1- B = Prob(reject H, | H,)

1

"Basic Definitions: POWER

POWER = Prob(reject H,| H,)
H =H,

H=H
1— = Prob(reject H,| H,)

o The power of a test increases as
the rate of type Il error decreases -o

8l 57 Eilam Gross Statistics in PP
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N

H,

|

™~

o=significance

3.0 A0 3.0 SS\ ]

lhh‘?o

1B
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/p-Va,lu.e

« The observ-ed p-vralue is a measure of the
compatibility of the data with the tested
hy.pothesis.

o It is the probability, under assumption of the null
hypothesis H,,, of finding data of equal or

greater incompatibility with the predictions of H

null

o An important property of a test statistic is that its
sampling distribution under the null hypothesis be
calculable, either exactly or approximately, which
allows p-v-alues to be calculated. wu

BeTill 23 Eilam Gross Statistics in PP Jan 2018
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" PDF of a test statistic

1200, T
1000 |
00
600
400 :

200

ll‘Lll

1 1 1 1 1 .
-15 -19 -3

g | alt)
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"PDF of a test statistic A
If p<o I;eject null

lzm_l I 1 I l | | I I I I I I I I I

: f(q | alt

p-v-alue (prun):

The probability., under
assumption of the null
hypothesis H,,, of finding
data of equal or greater
incompatibility with the

o0
p=fqbs f(qnull | Hnul/)dqnull
° /lj predictions of H,,
—13“1—5 | fli q 51] 10 1'—5
q 1obs

Null like  p——————) 2t like
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" PDF of a test statistic

If p<a reject null

lzm I | EEL L) l | [N | | I | I ' ] ' T 1 | C ] T I

1000 [~

f(q | null

q | alt)

200

Palt:

The probability.,
under assumption of
the alt hypothesis H,,
of finding data of
equal or greater
incompatibility with
the predictions of H,,

01_1_1_.1_4.-#’711'!
-15 -12 -5

~h
j g

q 1obs
Nulllike ) 2|t like
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" PDF of a test statistic

If p<a reject null

™

lzm_Tl1I]TTIII LIL ]T LI | L] I] TTI—
POWER =Prob(rejH, , | H )

600} i 1 o palt
400 :—
200 :—

O [ |

-15 15

q 1obs
Null like  p—————) |t like
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4 o
Power and Luminosity

For a giv-en significance the power increases with increased luminosity.

Luminosity ~ Total number of ev-ents in an experiment

N avents
150

100




N experiments

250 95% HO o = 5%

200! H1 asimov

150/

100 N per exp = 1000
: power = 0.689

50" m
: ,HHHH‘ M—ZL L(0)Y/L(1
=" 5 0o 5 10 15 2Lea(tlOL)




N experiments
250/ 95% HO 0t = 5%
200} H1 asimov
150!
100; N per exp = 700
: power = 0.551
50}
=" 5 0o 5 10 15 2LesltiOL)




N experiments

250, 95% HO ¢t = 5%
200} 1 asimov
150!
100; N per exp = 500
; power = 0.442
50, \
O:' ==Ll Mﬁ — —2Log(L(0)/L(1))

5 10 15




N experiments
250

200,
150,
100
50

95% HO & = 5%

15

N per exp = 300
power = 0.307

~2Log(L(0)/L(1))




/
Hard to tell £(qlJ=0) from f(q1J=1)
N experiments | —>CLs
250, 95% HO . =5%
200; Hi asimov
150
100; N per exp =100
3 power = 0.155
50}
T S -Ea e T ~2Log(L(0)/L(1
O —— 5 o 5 10 15-2toa(LOyL(1)
o




C L S "A concept of statistical evidence is not plausible unless it finds

Birnbaum (1977) \

'strong evidence for H, as against H,'

with small probability (o) when H, is true,

and with much larger probability (1— ) when H, is true. "

Birnbaum (1962) suggested that ot/ 1— 3

(significance | power)should be used as a measure of

the strength of a statistical test ,rather than o alone




" CLs

If p<a reject null

lzm | L L L )

1000 -

]00

600
400 I~

200 -

|
N =)
T

5

;

1y v L,
] r' SR L
S )

Pl |
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POWER =Prob(rej H

obs

Null like  p—————) |t like

null

q |alt

:1_palt
P

lHalt)

\

: l_palt

15
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4 L R
Distribution of p-v-alue under H1

N Experiments
500/ |,

400 |
300, |
200,
100

0.1 02 03 og4Pvalue




(o~ s :
Distribution of p-v-alue under HO
f(x) PDF
cumulative F(x) = j_xoo f(x)dx’
let y=F(x)
PDF of y

dP dP dx
dy - dx dy:f(x)/(dF/dx)=f(x)/f(x):1

F(x) distributes uniform between 0 and 1
p =1- F(x) distributes uniform between 0 and 1

™~




" , ™
Distribution of p-v-alue under HO

f(x) PDF

cumulative F(x) = j‘_: f(x)dx’
let y= F(x)

PDF of y

dP dP dx
dy - dx dy:f(x)/(dF/dx)=f(x)/f(x):1

F(x) distributes uniform between 0 and 1
p =1- F(x) distributes uniform between 0 and 1

04 06 08 1.0




Whtch Statistical Method is Better

e Tofind out which of two
methods is better plot
the p-vralue s the power
for each analysis
method

o Given the p-value, the
one with the higher
power is better

o p-Value~significance

™

lh'ﬁm

\a\

.0 7.0 =0

p-value 1- [3 power
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vexa ] 2 1n | y
p= / — e "dx=1 WiZ) //

From p-v-alues to Gaussian

significance

It is @ custom to

express the
p-Vralue as the
significance
associated to it,
had the pdf were
Gaussians

L V2T —

Z—-® ‘(1-p)

@

A significance of Z = 35 corresponds to p = 2.8’

7

s 10

Beware of 1 vs 2-sided definitions!

TN ; icti i
;;;S-‘fg;! n:n_:% Eilam Gross Statistics in PP
R .35 ’ j
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"4-Sided p-value

« When trying to reject an
hy.pothesis while
performing searches,
one usually considers
only one-sided tail 2<005
probabilities.

o Downward fluctuations e« Upward fluctuations

of the background will of the signal will not

not serv-e as an be considered as an
evidence against the evidence against the
background signal

BTl IS5 Eilam Gross Statistics in PP Jan 2018
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"2-Sided p-value

« When performing a
measurement (tu)’ any
dev-iation abov-e or
below the expected null
s drawing our attention
and might serv-e an ,,so.o'zs‘\/ ps0
indication of some two-tail critical region(s)
anomaly or new physics.

o Here we use g 2-sided p-
\Falue

ST % Eilam Gross Statistics in PP Jan 2018
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"4-sided 2-sided

5%

To determine a 1 sided 95% CL,
we sometimes need to set the critical
region to 10% 2 sided

2-sided 5% is 1.95 O
2-sided 10% is 1.64 O

e <005

10%

\ 4
ps 0025 ps0

— two-tail critical region
.f-"““j}?? Eilam Gross Statistics in PP #h 2018
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e
p-Vralue - testing the null hypothesis

When testing the b hypotheis (null=b), it is custom to set

X =2910*%
> if py<d.9 10-*the b hypothesis is rejected
—>Discovery

When testing the s+b hypothesis (null=s+b), set o« =5%
if p.,,<5% the signal hypothesis is rejected at the 95%
Confidence Lev-el (CL)

- Exclusion

Fgni [L%9 Eilam Gross Statistics in PP Jan 2018 /




Confidence Interv-al and
Confidence Lev-el (CL)

:'"' %'E?} Eilam Gross Statistics in PP
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/CL & Cl measurement [1=1.1£0.3 N
. L(u)= G(,U;,l:\[,Gﬂ)
= CI of u=[0.8,1.4]at 68% CL

o A confidence interv-al (Cl) is a particular kind of
interv-al estimate of a population parameter.

o Instead of estimating the parameter by a single \ralue,
an interv-al likely to include the parameter is giv-en.

o How likely. the interv-al is to contain the parameter is
determined by the confidence lev-el

o Increasing the desired confidence lev-el will widen the
confidence interv-al.

T % Eilam Gross Statistics in PP March 2017 /
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Confidence Interv-al & Coverage

«Say you have a measurement p_ of p with p,  , being
the unknown true v-alue of p

«Assume you know the probability. distribution function
P(Hyneqs!H)

ebased on your statistical method you deduce
that there is a 95% Confidence interv-al [p,,H,].

(it is 95% likely that the W, is in the quoted interval)

The correct statement:
oln an ensemble of experiments 95% of the obtained
confidence interv-als will contain the true v-alue of p.

March 2017
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4 .
Confidence Interv-al & Coverage

oYou claim, Cl,=[p,,K,] at the 95% CL

i.e. In an ensemble of experiments CL (95%) of the
obtained confidence interv-als will contain the true

Value of M.

off your statement is accurate, you hav-e full
coverage

off the true CL is>95%, your interv-al has an ov-er
coverage

off the true CL is <95%, your interv-al has an
undercov-erage

\
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Upper Limit
o Given the measurement you deduce somehow (based on your
statistical method) that there is a 95% Confidence interv-al
[o7uu,p]'

o This means: our interv-al contains u=0 (no Higgs)

« We therefore deduce that p<p,, at the 95% Confidence Level (CL)
* W, is therefore an upper limit on p
o If uup<1 -

o(mH)<GSM(mH)9
o SM Higgs with a mass m is excluded at the 95% CL

i % Eilam Gross Statistics in PP March 2017 /
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/How to deduce o ClI RN

o One can show that if the data is
distributed normal around the

avrerage i.e. P(datalp )=normal ° " Standerd DevieNons
1 _;;r_ Side Note:
A Clis an interval in the
true parameters phase-
space

fla | po) = —=c

e then one can construct a 6§8% Cl
around the estimator of p to be

X+0 |ie.x elx-0.,x+0,|@68%CL

e Howevrer, nlot all dtsdtrtfq;to:s eOne can guarantee a
are normal, many. GISIributions o4\ ergge with the

are even ““}‘“0‘”“ and Neyman Construction
coverage might be a real issue (1937)

Negmo,n, J. (193%)
K Philosophical Transactions of the Royal Society. of London A, 236, 333-380, 1017 /
g )

Irue



https://www.jstor.org/stable/91337
https://www.jstor.org/stable/91337

The Frequentist Game a ’la
Neyman

Or

How to ensure a Coverage with
Neyman construction

s:,‘i’ Eilam Gross Statistics in PP March 2017

W




4 :
Neyman Construction

Prob(s, |s,)is known

e
_________ St 5
SU
$rfidence Belt
S —
t1 Uf
=y
Sl """"""""""""""""

[s,s,] 68% Confidence Interval
In 68% of the experiments the derived C.l. contains the unknown true value of s

« With Neyman Construction we guarantee a coverage via construction, i.e. for
any value of the unknown true s, the Construction Confidence Interval will
K \MED the correct rate.

/




Ney.ma,n Construction
= X=S pdf f(x10)is known

for each prospective 0 generate x

true measured

f(z|@) construct aninterval in DATA phase — space

Interval = J hf(x 10)dx = 68%
X
Use the Confidence belt to construct the

repeat for each 0
02 / /]
CI =1[6,,0,](for a given x,, )

in 6 phase— sﬁace

Figure from K Cranmer iy T




Nuisance Parameters
or Systematics

ef‘_‘.‘.'.;“‘,.:,' m 1 o d .
Bl ey Eilam Gross Statistics in PP
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4 N
Nuisance Parameters (Systematics)
o« There are two kinds of parameters:
e Parameters of interest (signal strength... cross section... )
e Nuisance parameters (background (b), signal efficiency,
resolution, energy. scale,...)

o The nuisance parameters carry systematic uncertainties

« There are two related issues:
o Classifying and estimating the systematic uncertainties
o Implementing them in the analysis

o The physicist must make the difference between cross checks
and identifying the sources of the systematic uncertainty.
o Shifting cuts around and measure the effect on the observ-able...

Very often the observ-ed Vrariation is dominated by the statistical
uncertainty in the measurement.

<"‘. J.!‘

LA nj% Eilam Gross Statistics in PP March 2017 /
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4 N

Implementation of Nuisance Parameters

o Implement by marginalizing (Bay.esian) or profiling
(Frequentist)

o Hybrid: One can also use a frequentist test
statistics (PL) while treating the NPs via
marginalization (Hybrid, Cousins & Highland way.)

o Marginalization (Integrating))
o Integrate the Likelihood, L, ov-er possible vralues of
nuisance parameters (weighted by their prior belief
functions -- Gaussian,gamma, others...)

" L(w)= | L(u.0)7(6)d6

i ‘ I;n}_ﬁ Eilam Gross Statistics in PP March 2017 /
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The Hybrid Cousins-Highland Marginalization

Cousins & Highland

_ L(s +b(6)) R JL(S +b(0))(0)d6
L(b(6)) | L(b®))m(6)de

Profiling the NPs A

_ L(s+b(6) _ L(s+ b(6.))

LG®)  Lp6,))

és is the MLE of 0 fixing s

g @ Eilam Gross Statistics in PP March 2017
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4 N
Nuisance Parameters and Subsidiary Measurements

o Usually the nuisance parameters are auxiliary
parameters and their values are constrained by
auxiliary measurements

o Example
n~us(m,)+b (n)=us+b

m=1tb

L(,u .S+ b(@)) = Poisson(n;,u -8+ b(@)) : Poisson(m;’cb(é?))

March 2017
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4 . . ™
Mass shape as a discriminator

n~uwus(m,)+b m~th

L (u -5+ b )) = H Poisson (nl.; w-s; +b.(0 ))°P0iSSOn (ml.;rbi(ﬁ))
i=1

March 2017
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Wilks Theorem

S.S. Wilks, The large-sample disiribution of the likelihood ratio for testing composite
hypotheses, Ann. Math. Statist. 9 (1938) 60-2.

:E.'.i‘.‘.;ts,-':" nj_:]
Il EED Eilam Gross Statistics in PP March 2017 /
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Profile Likelihood with Nuisance Parameters

L(us+ b )
g, =-2In

L(ns+ b)
q, = -2In max, L(uS+ b)

max, , L(us+ b)

. L(MS+1§ )
= =-2In ~

g, = qg.(u) L(is+ b)

i MLE of u
b MLE of b

b, MLE of b fixing u

0, MLE ot 0 fixing u

ﬁ Eilam Gross Statistics in PP
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A toy case with 1-3 poi

lpoi: t, = L(p..Ab)
L=L(u.e,A,D) Ll Ab)
3 cases studied PO Ty = L([1,¢,A,b)
1poi:u while ¢,4,b profiled ) LA )
2poi:,e  profile Aand b POty q = L(iLE,A b
3poi: u,e,A profile b
L(u,e.A)= Poiss(nl ueA+b)G(A,, | A,0,)G(e,, le,c )G, b0,
L(p, e, A) = (MgAZ!JF st 0;%6_(% o o 1276_(% e UA127T€_(AMWS_A)2/2UE‘

) <
e
1 Rt 1 'J

March 2017




" Profile Likelihood for Measurement

s = =
- M 2
3 L(‘LL,G,A, )
2t
1\ /
05 ‘1io‘ - ‘1:5‘ ” ‘21.0”
— Profiled

Fixed A = Ameas, b - bmeas ’ €= Emeas




g ( L(I-Ab,fh, {J))
L(j,,b)

200 S
15
2
=8 1.0' s:m
| 4.61
| 2.30
0.5
00 02 04 06 08 1.0

background = 100
signal = 80
e=0.5
Oc =0.05

Op =20

Wmtistics in PP

Ne= UEAS+ Db

4 ,
A toy. case with 2 POA- Luc.at)

—2log (‘E(/f: f g))
2.0 i (ﬂsz' )

1.5
%
a 1.0 5:99
4.61
| 2.30
000 02 04 06 08 10
€
background = 100
signal = 90
£=0.5
Cs =0.15
Tr =10
March 2017
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"Profile Likelihood

back d=100 2 N
e t L(u,e,A,b) S
€=0.5 — X 9 _6
A=0.7 ‘L[ A A A
O: =0.05
op =10 1.3 L(‘U’G’A’b) A ~
0A =02 f €, —¢€
1.2
nmeas= 137 1.1§
R i = Pl f”— T —
€mess = 0.531025 1.0 oo -
A eas = 0.870554 |
0.9
Umeas = 0.756304
Bt —r—r—————————— ————
0.5 1.0 1.5 20 H
A ~ a




e

Wilks theorem in the presence of NPs

e Given n parameters of interest and any number of NPs, then

L(es.0,
Aa,) = ((f’ A’)
L(OCZ',QJ-)

g(a;)=—2log /l(ai) ~ %3

BTl L2 Eilam Gross Statistics in PP March 2017
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L(p,

A to’y.

As + b —(ueAs+b)

e, A)

ca,se wlth. 3 poi

O\ 2T

opV 2T oAV 2T

three parameters of interest (profiling only b) background = 100

non-profiled parameters set to their real value signal =90
flgulp=1)
e=0.5
i A=0.7
0.500 -
| O =0.05
0.100 -
0.050 Ub =10
0.010 UA =0.2
0.005)
;6000 events
e ()
— X*(Ngor=3) — X*(Ngor=2)
Xz(ndof=1)
March 2017

2 2 1 2 2
e_(emea 5) /2‘7 e_(bmeas —b) /20y, —e_(Ameas_A) /2‘7A
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A to’y. case with 2 poi

L(p,e, A) Ao + O mtweastn L —measo® /20 ~Omeasb)?/208 L —(Aeai—2)?/20%
0-6\/% O'b\/% O'A\/%
two parameters of interest (profiling A and b) background = 100
non-profiled parameters set to their real value signal — Q0
f(q|u=1
k=D 9 £=0.5
1/ X A=0.7
0.500 -
| 2 = 0.05
0.100 - —_ 10
0.050
| =0.2

0.010} h
0.005] E
| %m 7 6000 events
e S A
— X (ndof 3) X (ndof 2)
k ;,"“4: F%‘éﬁam@ﬁs:‘s) Statistics in PP March 2017 /




A to’y.

A3+b

case wlth. 1 poi

™~

L(p,e, A) e~ (uedstt) L ~(emens =2’ /20 b mea?20E L~ (Ameas—A)2 /203
0-6\/% O'b\/% O'A\/%

one parameter of interest (profiirg e Aand b)  background = 100
non-profiled parameters set to their real value signal — Q0

flqlp=1) 2 e=0.5

o 1 O =0.05
o.1oo§— O'b — 10
0.050
OA =0.2

0.010-
0.005

6000 events

wwwwwww L — = = =SS

P (0]

2 4 6 8 10 12 14
— Xz(ndof=3) Xz(ndof=2)
— Xz(ndof=1)

E“‘I‘ 157 . . . .
A n:n:_;% Eilam Gross Statistics in PP
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"Pulls and Ranking of NPs

0.-9,.
The pull of 6, is given by ——
00
0.-0 6 -0
without constraint o/ ! 0”\ — i 0.
k Oy ) O

Nothing irregular is seen

a NP in a non sensible way

It’s a good habit to ook at the pulls of the NPs and make sure that

In particular one would like to guarantee that the fits do not ov-er constrain

”:‘E% Eilam Gross Statistics in PP
17

TR
Ef“‘,“;};‘
ilj BB
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s

Random Data Set

Nmeas 132
bm - 103.208
Emees = 0.465459
Ameas = 0.4871 07
meas = 1.41099
To get the pulls:
—scan q(e€)
—Find é
—Find 6" and o i.e. the poitive and negative error bar substituting q(e)=1
q(e a[A) a(b)
& ; ¥ 6 / \ 5 ’,'
% Y T § 5 5 / \ s /
w"I'., 4 ‘.'f'l' '&\ s /' “\ a4 ,'.
\‘ N ¥ LF o\ st / \‘\ 3 ¢
N z: : 7 \ et N, 2
N/ b/ W
.\.‘\---«-’. N S -‘.7""..»."". , E=8zm e LDy
= I B t 2 1 . = -2 L R S 12 3 o
— Pof ad — Profiad refiled

— Fixed A=Appaa. E=Bppga = tiweg: — TDBAE €nasi B Dreas, UV V-eas mixed £ = Eeyun, A S Ay H = N

With the random data sets we find perfect pulls for the profiled scans
But not for the fix scans!




/ Random Data Set: Find the Impact of NP A
3.0 t

nms - 1 32

bm - 103.208 2.5
Emess = 0.465459 n
2.0 y
Ajeas = 0.487107 N M o:
Hmeas = 1.41099 215 \X\O
1.0
To get the impact of a Nuisance Parameter
in order to rank them: 0.5
Say we want the impact of € a0
—Scan q(e€), profiling all other NPs 2'5'
—Find € - 20
—(note that u, = i) T 15
o
~Find &, ﬁmi 1.0
o | 05
—The impact is given by Au™ ,LL o H g ;
o 035 0.40 0.45 0.50 0.55 0.60

)
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Random Data Set: SUMMARY of Pulls and Impact

nm = 132 R
bm = 103.208 _‘2 -1 - 1 ZAﬁ
Emess = 0.465459
Aeas = 0.487107 &4 €
Umeas = 1.41099

o 3 A

) & - dy
-2 -1 0 1 2
Ca,




/Pu,lls and Ranking of NPS

Ranking 0, by its effect
in the NP

By ranking we can tell
which NPs are the important
ones and which can be pruned

"‘ % Eilam Gross Statistics in PP
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If time permits:

The Feldman Cousins Unified Method

Bl e Eilam Gross Statistics in PP
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4 , , R
The Flip Flop Way of an Experiment

o The most intuitiv-e way to analyze the results of an
experiment would be

if the significance based on qqs, is less than 3
sigma, deriv-e an upper limit (just looking at tables), if
the result is >5 sigma deriv-e a discovery central
confidence interval for the measured parameter
(cross section, mass....)

o This Flip Flopping policy leads to undercoverage:
Is that really a problem for Physicists?
Some physicists say., for each experiment quote
always two results, an upper limit, and a (central?)
discovery confidence interv-al

o Many LHC analyses report both ways.

BT % Eilam Gross Statistics in PP March 2017
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Frequentist Paradise - F&C Unified with Full Cov-erage

o Frequentist Paradise is certainly made up of an interpretation by
constructing a confidence interv-al in brute force ensuring a cov-erage!

e Thisis the Neyman confidence interv-al adopted by F&C....

o The motiv-ation:
e Ensures Coverage

e Av-oid Fllip-Flopping -an ordering rule determines the nature of the
interv-a
(1-sided or 2-sided depending on your observ-ed data)

e Ensures Physical Interv-als r

n L(s+Db)

o Let the test statistics be ) L(s+b)

—21In L(s+b) §<
L(b)

§>0

where S is the k
physically allowed mean s that maximizes L(5+b)
(protect a downward fluctuation of the background,n_, >b ; §>0 )

o Order by taking the 68% highest q’s

n:%’% Eilam Gross Statistics in PP March 2017
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How to tell an Upper limit from a Measurement without Flip Flopping

o A °
measureme .
nt (L sided)

b

Mean L

(]

llllillllil

'
[} T

-1

0

Measured Mean x

Eilam Gross Statistics in PP
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How to tell an Upper limit fram n Mencurement without Flip Flopping

o An upper S S RARRIRAN i LA AL AR
limit (1 :
sided)

b

Mean L

N S R 4 R D A A
\ . O
O—llll llllilllil . A4
=2 -1 () 1 2 3 4
Measu‘cd Mean x X
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