Lattice QCD and rare decays

M. Wingate, DAMTP, University of Cambridge

Outline

\therefore Rare b decays
\because Rare s decays

Other topics

\because Hadronic matrix elements for $B_{s} \rightarrow \mu \mu$

* E. Gamiz, Wednesday morning WG 4
\because Ratio of $B_{s} \rightarrow D_{s} l v / B \rightarrow D l v$ for fragmentation ratio f_{s} / f_{d}
* MW, Tuesday afternoon WG 2

Rare b decays

Rare b decays

$$
\begin{gathered}
\mathcal{H}_{\mathrm{eff}}^{b \rightarrow s}=-\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i}\left(C_{i} \mathcal{O}_{i}+C_{i}^{\prime} \mathcal{O}_{i}^{\prime}\right) \\
\mathcal{O}_{9}^{\left({ }_{9}^{\prime}\right)}=\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma^{\mu} P_{L(R)} \boldsymbol{b} \bar{\ell} \gamma_{\mu} \ell \quad \mathcal{O}_{10}^{(\prime)}=\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma^{\mu} P_{L(R)} b \bar{\ell} \gamma_{\mu} \gamma_{5} \ell \\
\mathcal{O}_{7}^{\left({ }^{\prime}\right)}=\frac{m_{b} e}{16 \pi^{2}} \bar{s} \sigma^{\mu \nu} P_{R(L)} b F_{\mu \nu}
\end{gathered}
$$

Charmonium contributions

\therefore Affects all $b \rightarrow s$ decays, regardless of final state
\because At high q^{2}, an OPE can be developed to include these effects perturbatively (Grinstein \& Pirjol; Beylich, Buchalla, Feldmann)
\therefore First correction in expansion simply augments $\mathrm{C}_{7}{ }^{\text {eff }}$ and $\mathrm{C}_{9}{ }^{\text {eff }}$: Buras, Misiak, Münz, Pokorski (BMMP) \rightarrow Grinstein, Pirjol (GP)

Form factors: $b \rightarrow s$

$\therefore \square$ HPQCD subset for $B \rightarrow K$

* FNAL/MILC used most of the set for $B \rightarrow \pi / K$
: Cambridge subset for $B \rightarrow K^{*}$

Form factors: $b \rightarrow s$

$\therefore \square$ HPQCD subset for $B \rightarrow K$
\because FNAL/MILC used most of the set for $B \rightarrow \pi / K$
: Cambridge subset for $B \rightarrow K^{*}$

Form factors: $b \rightarrow s$

$\because \square$ HPQCD subset for $B \rightarrow K$

* FNAL/MILC used most of the set for $B \rightarrow \pi / K$
: Cambridge subset for $B \rightarrow K^{*}$

$\mathrm{B} \rightarrow \mathrm{K}$ form factors

$$
\begin{gathered}
\left.\left.\langle K(k)| \bar{s} \gamma^{\mu} b|B(p)\rangle=\left[(p+k)^{\mu}-\frac{m_{B}^{2}-m_{K}^{2}}{q^{2}} q^{\mu}\right] f_{+}\left(q^{2}\right)\right)+\frac{m_{B}^{2}-m_{K}^{2}}{q^{2}} q^{\mu} f_{0}\left(q^{2}\right)\right) \\
\langle K(k)| \bar{s} \sigma^{\mu \nu} q_{\nu} b|B(p)\rangle=\frac{i f_{T}\left(q^{2}\right)}{m_{B}+m_{K}}\left[q^{2}(p+k)^{\mu}-\left(m_{B}^{2}-m_{K}^{2}\right) q^{\mu}\right]
\end{gathered}
$$

* Gold-plated" matrix elements: QCD-stable $|\mathrm{i}\rangle$ and $|\mathrm{f}\rangle$ states
\% Observables: differential branching fraction $\mathrm{d} \Gamma / \mathrm{d} q^{2}$, forward / backward asymmetry $\mathrm{A}_{\text {FB }}$ (zero in SM), and "flat term" F_{H}

$\mathrm{B} \rightarrow \pi \mu^{+} \mu^{-} \quad \& \quad \mathrm{~B} \rightarrow \mathrm{~K} \mu^{+} \mu^{-}$

Bouchard et al., (HPQCD) arXiv:1306.0434
$B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$

$B \rightarrow K \mu^{+} \mu^{-}$

$$
B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}
$$

Du et al., (FNAL/MILC) arXiv:1510.02349
$\mathrm{B} \rightarrow \mathrm{V}$ form factors

$$
\begin{aligned}
& \langle V(k, \varepsilon)| \bar{q} \hat{\gamma}^{\mu} b|B(p)\rangle=\frac{2 i V\left(q^{2}\right)}{m_{B}+m_{V}} \epsilon^{\mu \nu \rho \sigma} \varepsilon_{\nu}^{*} k_{\rho} p_{\sigma} \\
& \langle V(k, \varepsilon)| \bar{q} \hat{\gamma}^{\mu} \hat{\gamma}^{5} b|B(p)\rangle=2 m_{V} A_{0}\left(q^{2}\right) \frac{\varepsilon^{*} \cdot q}{q^{2}} q^{\mu}+\left(m_{B}+m_{V}\right) A_{1}\left(q^{2}\right)\left(\varepsilon^{* \mu}-\frac{\varepsilon^{*} \cdot q}{q^{2}} q^{\mu}\right) \\
& \frac{\varepsilon^{*} \cdot q}{m_{B}+m_{V}}\left((p+k)^{\mu}-\frac{m_{B}^{2}-m_{V}^{2}}{q^{2}} q^{\mu}\right) \\
& q^{\nu}\langle V(k, \varepsilon)| \bar{q} \hat{\sigma}_{\mu \nu} b|B(p)\rangle=2 T_{1}\left(q^{2}\right) \varepsilon_{\mu \rho \tau \sigma} \varepsilon^{* \rho} p^{\tau} k^{\sigma} \\
& \left.-q^{\nu}\langle V(k, \varepsilon)| \bar{q} \hat{\sigma}_{\mu \nu} \hat{\gamma}^{5} b|B(p)\rangle=i T_{2}\left(q^{2}\right) \cdot \varepsilon_{\mu}^{*}\left(m_{B}^{2}-m_{V}^{2}\right)-\left(\varepsilon^{*} \cdot q\right)(p+k)_{\mu}\right] \\
& +i^{2} T_{3}\left(q^{2}\right)\left(\varepsilon^{*} \cdot q\right)\left[q_{\mu}-\frac{q^{2}}{m_{B}^{2}-m_{V}^{2}}(p+k)_{\mu}\right] \\
& A_{12}\left(q^{2}\right)=\frac{\left(m_{B}+m_{V}\right)^{2}\left(m_{B}^{2}-m_{V}^{2}-q^{2}\right) A_{1}\left(q^{2}\right)-\lambda A_{2}\left(q^{2}\right)}{16 m_{B} m_{V}^{2}\left(m_{B}+m_{V}\right)} \\
& T_{23}\left(q^{2}\right)=\frac{m_{B}+m_{V}}{8 m_{B} m_{V}^{2}}\left[\left(m_{B}^{2}+3 m_{V}^{2}-q^{2}\right) T_{2}\left(q^{2}\right)-\frac{\lambda T_{3}\left(q^{2}\right)}{m_{B}^{2}-m_{V}^{2}}\right] \\
& \text { with } \lambda=\left(t_{+}-t\right)\left(t_{-}-t\right) \quad t=q^{2} \quad t_{ \pm}=\left(m_{B} \pm m_{V}\right)^{2}
\end{aligned}
$$

$\mathrm{B} \rightarrow \mathrm{K}^{*} \mu^{+} \mu^{-}$

Horgan et al., arXiv:1310.3887; S Meinel, Paris Workshop 2014

$\mathrm{B}_{\mathrm{s}} \rightarrow \phi \mu^{+} \mu^{-}$

Expt. measurement from Aaij et al., (LHCb), arXiv:1506.08777

Bharucha, Straub, Zwicky, arXiv:1503.05534 Update of Horgan et al., arXiv:1310.3887 Altmannshoher \& Straub, arXiv:1411.3161

Difference in high q^{2} SM prediction due in part to: inclusion of low q² LCSR form factors, formulation for virtual corrections from $\mathrm{O}_{1}, \mathrm{O}_{2}$; also inputs.

$\mathrm{B}_{\mathrm{s}} \rightarrow \phi \mu^{+} \mu^{-}$

Witzel et al (RBC-UKQCD) Lattice 2016 proceedings

Fit to low recoil data (2013)

Best fit: $\quad C_{9}^{\mathrm{NP}}=-1.0 \pm 0.6 \quad C_{9}^{\prime}=1.2 \pm 1.0$

${ }^{*} C_{9}, C_{9}$ ' assumed to be real
\% Data in 2 highest q^{2} bins

+ $B \rightarrow K^{*} \mu \mu$ (neutral mode): $d B / d q^{2}, F_{L}, S_{3}, S_{4}, S_{5}, A_{F B}$
+ $B_{s} \rightarrow \varphi \mu \mu: d B / d q^{2}, F_{L}, S_{3}$
© Theory correlations between observables \& bins taken into account

Likelihood function

Horgan, Liu, Meinel, Wingate, PRL 112, arXiv:1310.3887

$\Lambda_{b} \rightarrow \Lambda$ form factors

$$
\begin{aligned}
\langle\Lambda| \bar{s} \gamma^{\mu} b\left|\Lambda_{b}\right\rangle & =\bar{u}_{\Lambda}\left[f_{1}^{V} \gamma^{\mu}-f_{2}^{V} \frac{i \sigma^{\mu \nu} q_{\nu}}{m_{\Lambda_{b}}}+f_{3}^{V} \frac{q^{\mu}}{m_{\Lambda_{b}}}\right] u_{\Lambda_{b}} \\
\langle\Lambda| \bar{s} \gamma^{\mu} \gamma_{5} b\left|\Lambda_{b}\right\rangle & =\bar{u}_{\Lambda}\left[f_{1}^{A} \gamma^{\mu}-f_{2}^{A} \frac{i \sigma^{\mu \nu} q_{\nu}}{m_{\Lambda_{b}}}+f_{3}^{A} \frac{q^{\mu}}{m_{\Lambda_{b}}}\right] \gamma_{5} u_{\Lambda_{b}} \\
\langle\Lambda| \bar{s} i \sigma^{\mu \nu} q_{\nu} b\left|\Lambda_{b}\right\rangle & =\bar{u}_{\Lambda}\left[f_{1}^{T V} \frac{\gamma^{\mu} q^{2}-q^{\mu} \phi}{m_{\Lambda_{b}}}-f_{2}^{T V} \frac{q^{\mu}}{m_{\Lambda_{b}}}\right] u_{\Lambda_{b}} \\
\langle\Lambda| \bar{s} i \sigma^{\mu \nu} q_{\nu} \gamma_{5} b\left|\Lambda_{b}\right\rangle & =\bar{u}_{\Lambda}\left[f_{1}^{T A} \frac{\gamma^{\mu} q^{2}-q^{\mu} \phi}{m_{\Lambda_{b}}}-f_{2}^{T A} \frac{q^{\mu}}{m_{\Lambda_{b}}}\right] \gamma_{5} u_{\Lambda_{b}}
\end{aligned}
$$

$\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$

Detmold \& Meinel, PRD 93 (2016)

$\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$

\because Contrary to rare B branching fractions, here the measured data at low recoil exceed the SM prediction.

Detmold \& Meinel, PRD 93 (2016)

Rare s decays

Neutral current $\mathrm{K} \rightarrow \pi$ decays

* Recent work by RBC-UKQCD: Xu Feng was due to speak here
* Long distance contributions important for the decays

$$
K^{ \pm} \rightarrow \pi^{ \pm} \ell^{+} \ell^{-} \quad K_{S} \rightarrow \pi^{0} \ell^{+} \ell^{-} \quad K^{ \pm} \rightarrow \pi^{ \pm} \nu \bar{\nu}
$$

* Amplitude

$$
\mathcal{A}_{\mu}^{i}\left(q^{2}\right)=\int d^{4} x\left\langle\pi^{i}(\mathbf{p})\right| T\left[J_{\mu}(0) \mathcal{H}_{W}(x)\right]\left|K^{i}(\mathbf{k})\right\rangle
$$

: Example contractions

Exploratory calculation

* Correlation functions include contributions from multi-pion states
\% These lead to exponentially growing contributions (when intermediate energy $<\mathrm{E}_{К}$) which must be removed

$$
\begin{aligned}
\Gamma_{\mu}^{(4)}\left(t_{H}, t_{J}, \mathbf{k}, \mathbf{p}\right)= & \int d^{3} \mathbf{x} \int d^{3} \mathbf{y} e^{-i \mathbf{q} \cdot \mathbf{x}}\left\langle\phi_{\pi}\left(t_{\pi}, \mathbf{p}\right) T\left[J_{\mu}\left(t_{J}, \mathbf{x}\right) H_{W}\left(t_{H}, \mathbf{y}\right)\right] \phi_{K}^{\dagger}\left(t_{K}, \mathbf{k}\right)\right\rangle \\
I_{\mu}\left(T_{a}, T_{b}, \mathbf{k}, \mathbf{p}\right)= & -\int_{0}^{\infty} d E \frac{\rho(E)}{2 E} \frac{\langle\pi(\mathbf{p})| J_{\mu}|E, \mathbf{k}\rangle\langle E, \mathbf{k}| H_{W}|K(\mathbf{k})\rangle}{E_{K}(\mathbf{k})-E}\left(1-e^{\left(E_{K}(\mathbf{k})-E\right) T_{a}}\right) \\
& +\int_{0}^{\infty} d E \frac{\rho_{S}(E)}{2 E} \frac{\langle\pi(\mathbf{p})| H_{W}|E, \mathbf{p}\rangle\langle E, \mathbf{p}| J_{\mu}|K(\mathbf{k})\rangle}{E-E_{\pi}(\mathbf{p})}\left(1-e^{-\left(E-E_{\pi}(\mathbf{p})\right) T_{b}}\right)
\end{aligned}
$$

\% 2 subtraction methods tested

* Approach looks feasible

Conclusions

\because Matrix elements of short-distance rare-decay operators
\% Baryon decay rate currently spoiling picture of single new C_{9}

* Progress on matrix elements of nonlocal operators in K sector

