Water Cherenkov v-Detectors \& GEANT4

1st National Workshop on GEANT4 and its Application to High Energy Physics \& Astrophysics December 5-9, 2022

IUCAA, Pune

Cherenkov photon emission

If the velocity of a particle is such that

$$
v_{p}>c / n(\lambda)
$$

where $\mathrm{n}(\lambda) \rightarrow$ the index of refraction of the material,
a pulse of light is emitted around the particle direction with an opening angle (θ_{c})

Cherenkov photon emission

- A charged particle moves faster than the phase velocity of light in a medium \rightarrow
electrons interacting with the particle can emit coherent photons while conserving energy and momentum
- It is actually not the particle that emits light, but the bounded (dielectric) electrons of the immediately surrounding medium
- Emission is coherent \rightarrow
in phase with the particle velocity
- Discovery: Cerenkov and Vavilov in 1934
- Explanation: Tamm and Frank in 1937

Cherenkov photon emission

- Dielectric medium electrons polarized by a moving charged particle
- De-excitation gives rise to a coherent radiation
- Same basic process as energy loss (Bethe, Fermi)

$$
\cos \theta_{C}=\frac{c}{n v}=\frac{1}{n \beta}
$$

Cherenkov photon emission

The energy emitted per unit length $d x$ travelled by the particle per unit of angular frequency $d \omega$ is:

$$
d E=\frac{q^{2}}{4 \pi} \mu(\omega) \omega\left(1-\frac{c^{2}}{v^{2} n^{2}(\omega)}\right) d x d \omega
$$

provided that $\beta=\frac{v}{c}>\frac{1}{n(\omega)}$. Here $\mu(\omega)$ and $n(\omega)$ are the frequency-dependent permeability and index of refraction of the medium, q is the electric charge of the particle, v is the speed of the particle, and c is the speed of light in vacuum.

Consequences:

- the yield of photons is flat versus these photons energy $(h \nu)$.
- the yield of photons is $\propto \lambda^{-2} \Rightarrow$ prominent at small wavelengths (UV)
- the spectrum is continuous \neq fluorescence

Cherenkov photon emission

The total amount of energy radiated per unit length is:

$$
\frac{d E}{d x}=\frac{q^{2}}{4 \pi} \int_{v>\frac{c}{n(\omega)}} \mu(\omega) \omega\left(1-\frac{c^{2}}{v^{2} n^{2}(\omega)}\right) d \omega
$$

This integral is done over the frequencies ω for which the particle's speed v is greater than speed of light of the media $\frac{c}{n(\omega)}$. The integral is non-divergent because at high frequencies the refractive index becomes less than unity.

$$
\frac{d E}{d x}=\frac{q^{2}}{4 \pi} \int_{v>\frac{c}{n(\omega)}} \mu(\omega) \omega\left(1-\frac{1}{\beta^{2} n^{2}(\omega)}\right) d \omega
$$

A basic Cherenkov detector

Distinguishing Particles using a Cherenkov detectors

With careful design velocity resolution $\sigma_{\beta} / \beta \approx 10^{-4}-10^{-5}$ can be obtained
Beam of
$\pi^{+}, \mathrm{K}^{+}, \mathrm{p}$

Detection Basics

Cherenkov radiator options

Material	$\mathrm{n}-1$	β_{c}	θ_{c}	photons/cm
solid natrium	3.22	0.24	76.3	462
Lead sulfite	2.91	0.26	75.2	457
Diamond	1.42	0.41	65.6	406
Zinc sulfite	1.37	0.42	65	402
silver chloride	1.07	0.48	61.1	376
Flint glass	0.92	0.52	58.6	357
Lead crystal	0.67	0.6	53.2	314
Plexiglass	0.48	0.66	47.5	261
Water	0.33	0.75	41.2	213
Aerogel	0.075	0.93	21.5	66
Pentan	$1.70 \mathrm{E}-03$	0.9983	6.7	7
Air	$2.90 \mathrm{E}-03$	0.9997	1.38	0.3
He	$3.30 \mathrm{E}-05$	0.999971	0.46	0.03

Cherenkov in water

- No. of Cherenkov photons with wavelength 300-600 nm , emitted by a relativistic particle per cm is about 340

We require,

- Efficient detection of the photons
- Large Photodetectors

Water Cherenkov Detector in Auger Experiment

Surface Detector

1,660 surface detector stations
(1,500 m apart from each other)

Super-Kamiokande Neutrino Experiment

- A cylindrical (39.3 m dia \& 41.4 m) high stainless steel tank, PMTs installed to the detector wall.
- 50 kt water.
- The PMT support structure divides the tank into two distinct, optically isolated volumes:
inner detector (ID)
outer detector (OD)
- The inwarded PMTs are installed to the ID wall and the outwarded PMTs to the OD wall.

Super-Kamiokande Neutrino Experiment: Detectors

Cherenlzov at SK

A Water Cherenkov Simulator Framework

WCSim

- Open-source
- GEANT4-based code for water cherenkov detectors.
https://github.com/Wcsim/WCSim

What can we do?

Construct the Detector

Particle Interactions

Detector Outputs

Trigger

Digitization of the Output

Output Storage \&
Further Analysis

WCSimConstructCylinder.cc
WCSimConstructEggShapedHyperk.cc WCSimConstructGeometryTables.cc WCSimConstructMaterials.cc WCSimConstructPMT.cc
WCSimDarkRateMessenger.cc WCSimDetectorConfigs.cc WCSimDetectorConstruction.cc WCSimDetectorMessenger.cc
WCSimEnumerations.cc
WCSimEventAction.cc
WCSimLC.cc
WCSimPhysicsListFactory.cc
WCSimPhysicsListFactoryMessenger.cc WCSimpmtInfo.cc
WCSimpMTObject.cc
WCSimpMTQE.cc
WCSimPrimaryGeneratorAction.cc WCSimPrimaryGeneratorMessenger.cc WCSimRandomMessenger.cc
WCSimRootDict.cc
WCSimRootDict.h
WCSimRootDict_rdict.pcm

WCSimRootEvent.cc WCSimRootGeom.cc WCSimRootOptions.cc WCSimRootTools.cc WCSimRunAction.cc WCSimRunActionMessenger.cc WCSimStackingAction.cc WCSimSteppingAction.cc WCSimTrackInformation.cc WCSimTrackingAction.cc WCSimTrajectory.cc WCSimTuningMessenger.cc WCSimTuningParameters.cc WCSimVisManager.cc WCSimWCAddDarkNoise.cc WCSimWCDAQMessenger.cc WCSimWCDigi.cc WCSimWCDigitizer.cc WCSimWCHit.cc WCSimWCPMT.cc WCSimWCSD.cc WCSimWCTrigger.cc

WCSim Geometry

- Consists of a cylindrical detector
- src/WCSimConstructCylinder.cc
- WCSimDetectorConstruction::ConstructCylinder()
- The inner detector : blacksheet and PMTs
- Active element: PMTs
- Blacksheet: goes around the back of the PMTs, reduces reflections and optically separates the inner and outer detector

Detector construction

WCBarrel

Hierarchy of Volumes

World Volume = ExpHall
File $=$ src/WCSimDetectorConstruction.cc Shape = Rectangular Box
Material = Air

Daughter Volume = WC
File = src/WCSimConstructCylinder.cc
Shape = Tubs
Material = Air

Daughter Volume = WCBarrel
File = src/WCSimConstructCylinder.cc
Shape = Tubs
Material = Water

Hierarchy of Volumes

- WCBarrel consists of: PMTs and blacksheets
- It is divided into two parts : the annulus (WCBarrelAnnulus) \& the caps (WCTopCapAssembly and WCBottomCapAssembly)

Hierarchy of Volumes

WCBarrelAnnulus

WCBarrelCell

[Contains one or more PMTs WCPMT) and the blacksheet (WCBarrelCellBlackS heet).
Each cell is flat, represents one modular detector section.]

WCBarre

Detector construction

Super-K geometry

```
void WCSimDetectorConstruction :: SetSuperKGeometry ()
{
WCSimPMTObject * PMT = CreatePMTObject ( " PMT20inch " );
WCPMTName = PMT - > GetPMTName ();
WCPMTExposeHeight = PMT - > GetExposeHeight ();
WCPMTRadius = PMT - > GetRadius ();
WCPMTGlassThickness = PMT - > GetPMTGlassThickness ();
WCIDDiameter = 33.6815* m ;
WCIDHeight= 36.200* m ;
WCBarrelPMTOffset = 0.0715* m ;// offset from vertical
WCBarrelNumPMTHorizontal = 150;
WCBarrelNRings = 17.;
WCPMTperCellHorizontal = 4;
WCPMTperCellVertical = 3;
WCCapPMTSpacing = 0.707* m}\mathrm{ ;
WCCapEdgeLimit = 16.9* m ;
WCBlackSheetThickness = 2.0* cm ;
WCAddGd = false ;
}
```

Thank you for the kind attention!

