On the resonant and non-resonant effects in the $B \to K^* \nu \bar{\nu}$

Diganta Das
Physical Research Laboratory
Ahmedabad, India

in collaboration with
Gudrun Hiller and Ivan Nisandzic

CKM 2016, Mumbai, 1/12/2016

Work in progress

- $B \to K^*(\to K\pi)\nu\bar{\nu}$ is governed by $b \to s\bar{\nu}\nu$ FCNC transition and therefore sensitive to new physics
- The form factors are the only source of hadronic uncertainty in $B o K^*
 uar
 u$
- The standard model short distance physics of $b o s \bar{\nu} \nu$ transition is very well known
- Experimentally challenging, expected to be seen in the near future (Belle II)
- * For new physics searches, resonant $B \to (K_0^*,\kappa)(\to K\pi)\nu\bar{\nu}$ and non-resonant $B \to K\pi\nu\bar{\nu}$ backgrounds become important

The $b \to s \bar{\nu} \nu$ effective Hamiltonian is

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \lambda_t \frac{\alpha}{8\pi} \left[(\textit{C}_L + \textit{C}_R) (\bar{s}\gamma_\mu \textit{b}) + (\textit{C}_R - \textit{C}_L) (\bar{s}\gamma_\mu \gamma_5 \textit{b}) \right] \sum_i \bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_i \,. \label{eq:Heff}$$

Altmannshofer et al. JHEP 0904 (2009) 022, Buras et al. JHEP 1502, 184 (2015)

 $C_L = -X(m_t^2/m_W^2)/\sin^2\theta$, including NLO QCD corrections and two-loop electroweak corrections Buchalla *et al.* Nucl. Phys. B **400** (1993) 225/Nucl. Phys. B **548** (1999) 309, Misiak Phys. Lett. B **451** (1999) 161, Brod *et al.* Phys. Rev. D **83**, 034030 (2011)

$$X(t) = 1.469 \pm 0.017$$
 Girrbach Noe arXiv:1410.3367

 $C_R = 0$ in the Standard Model

The hadronic matrix elements of the vector and axial vector currents between the B and the final K^* are

$$\begin{split} \langle K^*(k,n)|\bar{s}\gamma_{\mu}b|B(p_B)\rangle &= \epsilon_{\mu\nu\alpha\beta}\epsilon_{n}^{*}{}^{\nu}p_{B}^{\alpha}k^{\beta}\frac{2iV(q^2)}{m_B+m_{K^*}},\\ \langle K^*(k,n)|\bar{s}\gamma_{\mu}\gamma_{5}b|B(p_B)\rangle &= -\epsilon_{n\,\mu}^{*}(m_B+m_{K^*})A_{1}(q^2) + (p_{B\,\mu}+k_{\mu})\frac{\epsilon_{n}^{*}\cdot q}{m_B+m_{K^*}}A_{2}(q^2) + \\ &+ q_{\mu}(\epsilon_{n}^{*}\cdot q)\frac{2m_{K^*}}{q^2}(A_{3}(q^2)-A_{0}(q^2)), \end{split}$$

we use the form factors from combined fit to results in Lattice QCD and light-cone sum rules Bharucha et al. JHEP 08 (2016) 098, Horoan et al. Phys. Rev. D 89, 094501 (2014), Ball et al. Phys. Rev. D 71, 014029 (2005)

the B to K_0^* hadronic matrix element is

$$\langle K_0^*(k)|\bar{s}\gamma_{\mu}\gamma_5 b|B(p_B)\rangle = (p_B + k)_{\mu}f_+(q^2) + q_{\mu}f_-(q^2)$$

 f_{+} is known from calculations in the QCD sum rules Aliev et al. Phys. Rev. D 76, 074017 (2007)

$$f_{+}(\hat{q}^2) = \frac{f_{+}(0)}{1 - a_{+}\hat{q}^2 + b_{+}\hat{q}^4} , \quad \hat{q}^2 = q^2/m_B^2$$

the parameters are $f_+(0)=0.31\pm0.08$, $a_+=0.81$, $b_+=-0.21$ we limit the region of validity to 14 GeV²

The $B \to K^* \nu \bar{\nu}$ transversity amplitudes

$$\begin{split} H_{\perp}(q^2) &= \frac{\sqrt{2}(C_L + C_R)\lambda^{1/2}(m_B^2, q^2, m_{K^*}^2)}{m_B + m_{K^*}} V(q^2), \\ H_{\parallel}(q^2) &= \sqrt{2}(C_L - C_R)(m_B + m_{K^*})A_1(q^2), \\ H_0(q^2) &= -\frac{(C_L - C_R)}{2m_{K^*}\sqrt{q^2}} \bigg[(m_B + m_{K^*})(m_B^2 - m_{K^*}^2 - q^2)A_1(q^2) - \frac{\lambda(m_B^2, q^2, m_{K^*}^2)}{m_B + m_{K^*}} A_2(q^2) \bigg]. \end{split}$$

The $B o K_0^*
u \bar{
u}$ transversity amplitude

$$H'_0(q^2) = (C_R - C_L) \frac{\lambda^{1/2}(m_B^2, q^2, m_{K_0^*}^2)}{\sqrt{q^2}} f_+(q^2).$$

finite width of the K^* and the K_0^* , κ are taken into account by Breit-Wigner functions

$$\begin{split} \widetilde{BW}_{K^*}(p^2) &= \frac{1}{p^2 - m_{K^*}^2 + i m_{K^*} \Gamma_{K^*}}, \\ \widetilde{BW}_{\text{scalar}}(p^2) &= -\frac{g_{\kappa}}{p^2 - (m_{\kappa} - i \Gamma_{\kappa}/2)^2} + \frac{1}{p^2 - (m_{K_0^*}^* - i \Gamma_{K_0^*}/2)^2} \end{split}$$

 $0 \lesssim |g_{\kappa}| \lesssim 0.2$ and arg $\in [\pi, \pi/2]$

Becirevic et al. Nucl. Phys. B 868 (2013) 368

Denote $H_{0,\parallel,\perp} o \widetilde{H}_{0,\parallel,\perp}$ and $H_0' o \widetilde{H}_0'$

the $B o K\pi$ matrix elements for vector and the axial vector currents are Lee *et al.* Phys. Rev. D 46 (1992) 5040

$$\begin{split} \langle K\pi|\bar{s}\gamma_{\mu}b|B\rangle &= h\epsilon_{\mu\nu\alpha\beta}p_{B}^{\nu}(p_{K}^{\alpha}+p_{\pi}^{\alpha})(p_{K}^{\beta}-p_{\pi}^{\beta})\\ \langle K\pi|\bar{s}\gamma_{\mu}\gamma_{5}b|B\rangle &= -i\,w_{+}(p_{K\mu}+p_{\pi\mu})-iw_{-}(p_{K\mu}-p_{\pi\mu})-irq_{\mu}\,. \end{split}$$

at leading order in heavy hadron chiral perturbation theory (HH χ PT) Lee *et al.* Phys. Rev. D 46 (1992) 5040, Buchalla *et al.* Nucl. Phys. B 525 (1998) 333

$$\begin{split} w_{\pm}(q^2, p^2, \theta_K) &= \pm \frac{g f_{B_d}}{2 f^2} \frac{m_B}{v \cdot p_\pi + \Delta} \;, \quad v = p_B/m_B, \quad \Delta = m_{B^*} - m_B \;, f^2 = f_\pi f_K \;, \\ h(q^2, p^2, \theta_K) &= \frac{g^2 f_{B_d}}{2 f^2} \frac{1}{(v \cdot p_\pi + \Delta)(v \cdot p_{K\pi} + \Delta + \mu_s)} \;, \quad \mu_s = m_{B_s} - m_B \;. \end{split}$$

 $HH_{\chi}PT$ is valid when the 3-momentum of final state pseudoscalars are soft (we take the region of validity from 14 GeV^2 to the kinematic endpoint)

HH $_{\chi}$ PT coupling $q=0.569\pm0.076$ Flynn et al. 2013

we add 20% uncertainty on w_{\pm} and h

the $B \to K \pi \nu \bar{\nu}$ transversity amplitudes are

$$H_{0,\,\parallel}^{nr} = (\textit{C}_{\textit{L}} - \textit{C}_{\textit{R}}) \textit{F}_{0,\,\parallel}^{nr} \;, \quad H_{\perp}^{nr} = (\textit{C}_{\textit{L}} + \textit{C}_{\textit{R}}) \textit{F}_{\perp}^{nr} \;. \label{eq:energy_energy}$$

the $B \to K \pi \nu \bar{\nu}$ transversity form factors read

$$\begin{split} F_\perp^{\rm nr} &= \frac{\lambda^{1/2} (m_{K\pi}^2, m_K^2, m_\pi^2) \lambda^{1/2} (m_B^2, p^2, q^2)}{2 \sqrt{p^2}} h \sin \theta_K, \\ F_\parallel^{\rm nr} &= -\sin \theta_K \frac{\lambda^{1/2} (p^2, m_K^2, m_\pi^2)}{\sqrt{p^2}} w_-, \\ F_0^{\rm nr} &= \frac{i}{2 \sqrt{q^2}} \bigg[w_+ \lambda^{1/2} (m_B^2, q^2, p^2) + w_- \frac{1}{p^2} \bigg((m_K^2 - m_\pi^2) \lambda^{1/2} (m_B^2, q^2, p^2) \\ &- (m_B^2 - p^2 - q^2) \lambda^{1/2} (m_K^2, m_\pi^2, p^2) \cos \theta_K \bigg) \bigg]. \end{split}$$

the transversity amplitudes can be expanded in terms of associated Legendre polynomials P_ℓ^m

$$\begin{split} F_0^{\text{nr}} &= \sum_{\ell=0} a_0^\ell(q^2, \rho^2) \, P_\ell^{\textit{m}=0}(\cos\theta_{\textit{K}}) \,, \\ F_\parallel^{\text{nr}} &= \sum_{\ell=1} a_\parallel^\ell(q^2, \rho^2) \, \frac{P_\ell^{\textit{m}=1}(\cos\theta_{\textit{K}})}{\sin\theta_{\textit{K}}} \,, \\ F_\perp^{\text{nr}} &= \sum_{\ell=1} a_\perp^\ell(q^2, \rho^2) \, \frac{P_\ell^{\textit{m}=1}(\cos\theta_{\textit{K}})}{\sin\theta_{\textit{K}}} \,. \end{split}$$

the three fold differential distribution is

$$\frac{\mathit{d}^{3}\Gamma}{\mathit{d}q^{2}\mathit{d}p^{2}\mathit{d}\cos\theta_{\mathit{K}}} = 3\mathcal{N}(\mathit{q}^{2}) \left[|\widetilde{H_{\perp}} + e^{i\,\delta_{\mathit{K}^{*}}}\,\mathit{H}_{\perp}^{\mathsf{nr}}|^{2} + |\widetilde{H_{\parallel}} + e^{i\,\delta_{\mathit{K}^{*}}}\,\mathit{H}_{\parallel}^{\mathsf{nr}}|^{2} + |\widetilde{H_{0}} + e^{i\,\delta_{\mathit{K}^{*}}}\,\mathit{H}_{0}^{\mathsf{nr}} + \widetilde{H_{0}}'|^{2} \right].$$

 $\delta_{\mathcal{K}^*}$ is the relative strong phase between the resonant and the non-resonant modes

the two-fold differential distribution in the presence of K^* and scalars (κ, K_0^*)

$$\frac{d^2\Gamma}{dq^2d\cos\theta_K} = a(q^2) + b(q^2)\cos\theta_K + c(q^2)\cos^2\theta_K.$$

for a pure K^* contribution only $a(q^2)$, $c(q^2)$ are nonzero and the longitudinal polarization fraction is

$$F_L = \frac{d\Gamma_L/dq^2}{d\Gamma/dq^2}, \quad \frac{d\Gamma_L}{dq^2} = \frac{2}{3}(a(q^2) + c(q^2)), \quad \langle F_L \rangle = \frac{\int_{q_{\min}}^{q_{\max}} d\Gamma_L/dq^2}{\int_{q_{\min}}^{q_{\max}} d\Gamma/dq^2}$$

in presence of non-resonant $B \to K \pi \nu \bar{\nu}$ the two-fold distribution is more complicated

$$\tilde{F}_L = \frac{d\tilde{\Gamma}_L/dq^2}{d\Gamma/dq^2}, \quad \frac{d\tilde{\Gamma}_L}{dq^2} = \int_{-1}^1 \frac{d^2\Gamma}{dq^2 d\cos\theta_K} \left(\frac{1}{3}P_0^0 + \frac{2\cdot 2 + 1}{3}P_2^0\right) d\cos\theta_K.$$

– our analysis is done in the following two p^2 windows

P-window or signal window: $[(m_{K^*}-0.1 \text{GeV})^2, (m_{K^*}+0.1 \text{GeV})^2]$ Aaij *et al.* JHEP 1308 (2013) 131 S+P-window: $[(m_K+m_\pi)^2, 1.44 \text{GeV}^2]$

Figure: Differential branching ratio in q^2 (left) and longitudinal polarization fraction F_L (right) for a pure $B \to K^* (\to K\pi) \nu \bar{\nu}$ in the P-wave signal window with the K^* taken at finite width.

Figure: Left: Comparison of the p^2 -lineshapes of the resonant K^* -contribution (solid blue line) and scalar meson contributions (K_0^* , κ) (red line) at $q^2=4\text{GeV}^2$. The input parameters are set to the central values, and $g_\kappa=0.2$, $\arg(g_\kappa)=\pi/2$. Right plot: Comparison of the p^2 -lineshapes of the resonant K^* -contribution (solid blue), purely non-resonant contribution (dashed red) and the resulting lineshapes that also include the interferences, for several chosen values of the strong phase δ , at $q^2=16\text{GeV}^2$. The vertical shaded region corresponds to the P-window region in p^2 .

- ratio of the integrated branching fractions as a function of the bin size in q^2 :

$$R_{Br} = \frac{\int_{q_{min}^2}^{q_{max}^2} \int_{\rho_{cut}^2} d^2\mathcal{B}(B \to K\pi\nu\bar{\nu})/(dq^2dp^2)}{\int_{q_{min}^2}^{q_{max}^2} \int_{\rho_{cut}^2} d^2\mathcal{B}(B \to (K^* \to K\pi)\nu\bar{\nu})/(dq^2dp^2)}$$

Figure: The $R_{\rm Br}(q^2_{\rm max})$ is shown in the P- and S+P-wave signal window at large recoil. The bands correspond to the uncertainties due to form factors and input parameters.

Figure: The ratio of total integrated branching ratio $\mathcal{B}(B \to (K^*, K\pi)(\to K\pi)\nu\bar{\nu})$ to $\mathcal{B}(B \to (K^*)(\to K\pi)\nu\bar{\nu})$ with respect to the relative strong phase δ_{K^*} . The bands indicate uncertainties coming from form factors and input parameters. The light and dark bands correspond to P- and S+P-window cuts.

 \Longrightarrow the strong can be fixed from $B \to K^* \ell \ell$ and $B \to K \pi \ell \ell$ interference effects Das et al. 1506.06699

Preliminary Results

Total integrated branching ratio

	$\mathcal{B}\times 10^{-6}$ in [0-14] GeV^2	$\mathcal{B}\times 10^{-6}$ in [14-19] GeV^2
${\cal B}(B o K^*(o K\pi) uar u) _{{\sf narrow}}$	6.97 ± 0.77	2.48 ± 0.26
${\cal B}({m B} o {m K}^*(o {m K}\pi) uar u) _{ extsf{P-cut}}$	5.91 ± 0.66	2.08 ± 0.21
${\cal B}({m B} o {m K}^*(o {m K}\pi) uar u) _{{\sf P+S-cut}}$	6.51 ± 0.72	$\textbf{2.26} \pm \textbf{0.23}$
${\cal B}(B o ({\it K}^*,{\it K}_0^*)(o {\it K}\pi) uar u) _{ ext{P-cut}}$	5.95 ± 0.66	_
$\mathcal{B}(B o (K^*,K_0^*)(o K\pi) uar u) _{S+P-cut}$	6.64 ± 0.72	_
${\cal B}(B o (K^*, {\sf nonres})(o K\pi) uar u) _{\sf P-cut}$	_	$2.12 \pm 0.22^{+0.44}_{-0.33}$
${\cal B}({\cal B} \to ({\cal K}^*, {\rm nonres})(\to {\cal K}\pi)\nu\bar\nu) _{{\sf S+P-cut}}$	_	$2.39 \pm 0.24^{+0.59}_{-0.27}$

less sensitive to resonant scalars

Impact of non-resonant background on longitudinal polarization fraction

Figure: The total integrated longitudinal polarization fraction $\langle \tilde{F}_L(K^*,K\pi) \rangle$ to $\langle F_L(K^*) \rangle$ with respect to the relative strong phase δ_{K^*} . The bands indicate uncertainties coming from form factors and input parameters. The light and dark bands correspond to P- and S+P-window cuts.

Summary

we have studied the impacts of resonant and non-resonant backgrounds on $B o K^*
uar
u$

depending on the relative strong phase there could be up to 30% effect on ${\cal B}$

 ${\it F_{\it L}}$ is less sensitive to the backgrounds, can be used to test form factors

Thank You