

Black-hole binaries in the AstroSat era

Tomaso Belloni (INAF - Osservatorio Astronomico di Brera) Visiting Professor, Univ. of Southampton

10 JANUARY 2017

TIFR - Mumbai

A BIT OF HISTORY: NOISE

A BIT OF HISTORY: QPO

VARIABLE OR QUIET?

FAST TIME VARIABILITY

- Dependence on source state —> related to physics
- Energy dependence —> spectrum changes fast
- Broad-band noise components —> lots of noise
- Low-Frequency Quasi-Periodic Oscillations —> Common
- High-Frequency Quasi-Periodic Oscillations —> Rare
- Accretion and General Relativity —> Which is which?
- Fast variability at other wavelengths

ENERGY DEPENDENCE

Cyg X-1

ENERGY DEPENDENCE

BROAD-BAND NOISE: FLUCTUATIONS

TO VARY OR NOT TO VARY

Disk varies more and leads at low frequencies

Disk varies only when not seen

LOW-FREQUENCY QPO: LENSE-THIRRING

Lense-Thirring precession & MRI Stella & Vietri 1998a,b, 1999

Ingram et al 2009, Ingram & Done 2010, Ingram & Done 2011

Truncated disk model Done, Gierliński, Kubota 2007

LOW-FREQUENCY QPO: LENSE-THIRRING

HIGH-FREQUENCY QPO: GR

Belloni, Sanna & Méndez (2012)

HIGH-FREQUENCY QPO: GRS1915+105

Caveat: @ISCO, Keplerian and precession are the same

GRO J1655-40: UNIQUE SOURCE

Only source which shows simultaneous type-C and 2xHFQPO

MODEL CAN BE TESTED

- The Relativistic Precession Model (RPM) predicts three frequencies
- Relativistic frequencies: keplerian, nodal, Lense-Thirring
- We have three frequencies

STELLA & VIETRI 1998; STELLA, VIETRI & MORSINK 1999

THREE EQUATIONS

Solution for

a = 0.29 + - 0.01

$$M = 5.31 + - 0.07 M_{\odot}$$

 $R = 5.68 + - 0.04 R_g$

Dynamical mass:

$$M = 5.4 + - 0.3 M_{\odot}$$

MOTTA (2015)

XTE J1550-564: THE NEXT BEST It shows simultaneous type-C and 1xHFQPO

QPOs in HSS

Target	Obs-ID	$v_{\rm max}$ (Hz)	Q	rms	New ?	state	spin limits
GX 339-4	92085-01-02-03	10.59 ± 0.18	3.46 ± 0.50	5.05 ± 0.03	yes	HSS	0.16 - 0.38
4U 1630-47	80117-01-07-01	14.80 ± 0.28	2.17 ± 0.27	9.5 ± 0.4	no	ULS	0.12
4U 1543-47	70133-01-01-00	15.37 ± 0.18	2.57 ± 0.27	4.2 ± 0.03	yes	HSS	0.13 - 0.47
XTE J1859+226	40124-01-14-00	8.56 ± 0.06	2.76 ± 0.18	12.4 ± 0.4	no	HIMS	>0.07
XTE J1650-500	60113-01-13-02	6.84 ± 0.05	8.05 ± 1.23	20.8 ± 0.3	no	HIMS	>0.06
XTE J1817-330	91110-02-32-00	9.6 ± 0.5	2.93 ± 0.82	5.7 ± 0.1	yes	HSS	0.08 - 0.36
XTE J1748-288	30171-02-01-00	31.55 ± 0.13	6.00 ± 0.42	10.2 ± 0.5	no	HIMS	>0.23
XTE J1752-223	95360-01-11-00	6.46 ± 0.13	3.6 ± 1.1	23.4 ± 1.2	no	HIMS	>0.06
XTE J1550-564	40401-01-48-00	18.10 ± 0.06	19 ± 4	6.2 ± 0.1	no	HSS	0.31 - 0.34
MAXI J1543-564	96371-02-02-01	5.72 ± 0.04	10.2 ± 1.4	27.3 ± 1.2	no	HIMS	>0.05
H1743-322	80135-02-03-00	14.6 ± 0.2	12.6 ± 6.3	4.4 ± 0.2	no	ULS	0.12
GRO J1655-40	91702-01-17-01	27.51 ± 0.13	44 ± 21	2.7 ± 0.1	no	HSS	0.29 - 0.31

FRANCHINI, MOTTA & LODATO (2017)

OPEN ISSUES

- Additional evidence (HFQPOs are few)
 - GR, BH spin, ISCO, BH signature
- Modulation mechanism (QPOs not from disk)
- Other types of QPOs
- Connection to MW observations (radio, IR)
- Unified model for NS LMXB

THE PRESENT

- Swift J174510.8–262411
- INTEGRAL/Swift campaign

DEL SANTO ET AL. (2016)

THE PRESENT

THE FUTURE

