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Examples of cosmic ray interactions
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Centaurus A

M31

Air shower

Source

Intergalactic medium
(10-6 protons/cm3,
 400 photons/cm3)

Interstellar medium
(1 proton/cm3)

Earth´s atmosphere
(7x1020 protons/cm3)



Outline
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Lecture 1 – Low- and intermediate-energy interactions

• Particle production threshold: resonances
• Intermediate energies: two-string models
• Extension to nuclei and photons

Lecture 2 – Interactions at very high energy
• Jets and minijets, multiple interactions
• Unitarization and saturation scenarios
• Comparison of models and uncertainties of extrapolations

Lecture 3 – Air shower phenomenology and accelerator data
• Relation between hadronic interactions and air showers
• Accelerator experiments & discrimination potential of LHC
• Comparison of model predictions with accelerator data



Comparison of energies
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Simulation concepts: energy ranges
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Resonances (fireball)

 Scaling region (longitudinal phase space)

Minijet region (scaling violation) ???
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γ p→ X



Particle production close to the threshold:

Resonance models
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Photoproduction of resonances
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proton (0.938 GeV)

photon

Δ+ resonance (1.232 GeV)
proton, neutron

π0, π+

CMB: Energy threshold not sharp

Decay branching ratio proton:neutron = 2:1

Mean proton energy loss 20%

Decay isotropic up to spin effects

In proton rest frame:

Eγ,lab ≈ 300 MeV

Ep,∆ =
m2

∆−m2
p

2Eγ,max(1− cosθ)
≈ 1020eV

Eγ,max ≈ 10−3eV



Superposition of resonances
A. Mücke et al. / Computer Physics Communications 124 (2000) 290–314 297

Table 2

Baryon resonances and their physical parameters implemented in SOPHIA (see text). Superscripts + and 0 in the parameters refer to pγ and

nγ excitations, respectively. The maximum cross section, σmax = 4m2NM2σ0/(M
2 − m2N)2, is also given for reference

Resonance M Γ 103b+
γ σ+

0
σ+
max 103b0γ σ 0

0
σ 0max

$(1232) 1.231 0.11 5.6 31.125 411.988 6.1 33.809 452.226

N(1440) 1.440 0.35 0.5 1.389 7.124 0.3 0.831 4.292

N(1520) 1.515 0.11 4.6 25.567 103.240 4.0 22.170 90.082

N(1535) 1.525 0.10 2.5 6.948 27.244 2.5 6.928 27.334

N(1650) 1.675 0.16 1.0 2.779 7.408 0.0 0.000 0.000

N(1675) 1.675 0.15 0.0 0.000 0.000 0.2 1.663 4.457

N(1680) 1.680 0.125 2.1 17.508 46.143 0.0 0.000 0.000

$(1700) 1.690 0.29 2.0 11.116 28.644 2.0 11.085 28.714

$(1905) 1.895 0.35 0.2 1.667 2.869 0.2 1.663 2.875

$(1950) 1.950 0.30 1.0 11.116 17.433 1.0 11.085 17.462

excitation. The resonances fulfilling these criteria and their parameters, as implemented in SOPHIA after iterative

optimization, are given in Table 2. The phase-space reduction close to the Nπ threshold is heuristically taken into

account by multiplying Eq. (11) with the linear quenching function Qf(ε′;0.152,0.17) for the$(1232)-resonance,

and with Qf(ε′;0.152,0.38) for all other resonances. The function Qf(ε′; ε′
th,w) is defined in Appendix 6. The

quenching width w has been determined from comparison with the data of the total pγ cross section, and of the

exclusive channels pπ0, nπ+ and $++π− where most of the resonances contribute. The major hadronic decay

channels of these baryon resonances are Nπ , $π and Nρ; for the N(1535), there is also a strong decay into Nη,

and the N(1650) contributes to the ΛK channel. The hadronic decay branching ratios bc are all well determined

for these resonances and given in the RPP. However, a difficulty arises from the fact that branching ratios can be

expected to be energy dependent because of the different masses of the decay products in different branches. In

SOPHIA, we consider all secondary particles, including hadronic resonances, as particles of a fixed mass. This

implies that, for example, the decay channel $π is energetically forbidden for
√

s < m$ + mπ ≈ 1.37 GeV. To

accommodate this problem, we have developed a scheme of energy dependent branching ratios, which change at the

thresholds for additional decay channels and are constant in between. The requirements are that (i) the branching

ratio bc = 0 for ε′ < ε′
th,c, and (ii) the average of the branching ratio over energy, weighted with the Breit–Wigner

function, correspond to the average branching ratio given in the RPP for this channel. For all resonances, we

considered not more than three decay channels leading to a unique solution to this scheme. No fits to data are

required. In practice, however, the experimental error on many branching ratios allows for some freedom, which

we have used to generate a scheme that optimizes the agreement with the data on different exclusive channels.

The hadronic branching ratios are given in Table 4 in Appendix 6. To obtain the contribution to a channel with

given particle charges, e.g.,$++π−, the hadronic branching ratio b$π has to be multiplied with the iso-branching

ratios as given in Table 1. We note that with the parameters bγ , bc and biso, the resonant contribution to all exclusive

decay channels is completely determined.

The angular decay distributions for the resonances follow from Eq. (6). In SOPHIA, the kinematics of the decay

channels into Nπ is implemented in full detail (see Table 3). For other decay channels, we assume isotropic

decay according to the phase space. Furthermore, there might be some mixing of the different scattering angular

distributions since the sampled resonance mass, in general, does not coincide with its nominal mass. This effect is

neglected in our work. Instead, we use the angular distributions applying to resonance decay at its nominal massM .

The two decay products of a resonance may also decay subsequently. This decay is simulated to occur

isotropically according to the available phase space.
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nucleon. For this particle, the Lorentz invariant 4-momentum transfer t = (PN−Pfinal)
2 is often used as a final state

variable. At small s, many interaction channels can be reduced to 2-particle final states, for which dσ/dt gives a
complete description.

2.2. Interaction processes

Photon–proton interactions are dominated by resonance production at low energies. The incoming baryon is

excited to a baryonic resonance due to the absorption of the photon. Such resonances have very short life times and

decay immediately into other hadrons. Consequently, the Nγ cross section exhibits a strong energy dependence

with clearly visible resonance peaks. Another process being important at low energy is the incoherent interaction of

photons with the virtual structure of the nucleon. This process is called direct meson production. Eventually, at high

interaction energies (
√

s > 2GeV) the total interaction cross section becomes approximately energy-independent,

while the contributions from resonances and the direct interaction channels decrease. In this energy range, photon–

hadron interactions are dominated by inelastic multiparticle production (also called multipion production).

2.2.1. Baryon resonance excitation and decay

The energy range from the photopion threshold energy
√

s th ≈ 1.08 GeV for γN -interactions up to
√

s ≈ 2 GeV

is dominated by the process of resonant absorption of a photon by the nucleon with the subsequent emission of

particles, i.e. the excitation and decay of baryon resonances. The cross section for the production of a resonance

with angular momentum J is given by the Breit–Wigner formula

σbw(s;M,Γ, J ) = s

(s − m2
N)2

4πbγ (2J + 1)sΓ 2

(s − M2)2 + sΓ 2
, (4)

whereM and Γ are the nominal mass and the width of the resonance. bγ is the branching ratio for photo-decay of

the resonance, which is identical to the probability of photoexcitation. The decay of baryon resonances is generally

dominated by hadronic channels. The exclusive cross sections for the resonant contribution to a hadronic channel

with branching ratio bc can be written as

σc(s;M,Γ, J ) = bcσbw(s;M,Γ, J ), (5)

with
∑
c bc = 1 − bγ ≈ 1. Most decay channels produce two-particle intermediate or final states, some of them

again involving resonances. For the pion-nucleon decay channel, Nπ , the angular distribution of the final state is

given by

dσNπ

d cosχ∗ ∝
J∑

λ=−J

∣∣∣f J
1/2,λd

J
λ,1/2(χ

∗)
∣∣∣
2

, (6)

where χ∗ denotes the scattering angle in the CMF and f J
1/2,λ are the Nπ -helicity amplitudes. The functions

dJ
λ,1/2(χ

∗) are commonly used angular distribution functions which are defined on the basis of spherical harmonics.
TheNπ helicity amplitudes can be determined from the helicity amplitudesA1/2 andA3/2 for photoexcitation (see

Ref. [22] for details), which are measured for many baryon resonances [23]. The same expression applies to other

final states involving a nucleon and an isospin-0 meson (e.g., Nη). For decay channels with other spin parameters,
however, the situation is more complex, and we assume for simplicity an isotropic decay of the resonance.

Baryon resonances are distinguished by their isospin into N -resonances (I = 1/2, as for the unexcited nucleon)
and (-resonances (I = 3/2). The charge branching ratios biso of the resonance decay follow from isospin

symmetry. For example, the branching ratios for the decay into a two-particle final state involving a N - or (-

baryon and an I = 1 meson (π or ρ) are given in Table 1. Here (I3 is the difference in the isospin 3-component
of the baryon between initial and final state (the baryon charge is QB = I3 + 1/2). In contrast to the strong

decay channels, the electromagnetic excitation of the resonance does not conserve isospin. Hence, the resonance

Breit-Wigner resonance 
cross section



Resonance and direct pion production
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Direct pion production
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Possible interpretation: p fluctuates from time to time to n and π+

p
π+

n

p
π+

n

photon (from CMB or 
other background field)

fluctuation 
materialized

∆E∆t ≈ 1Heisenberg uncertainty relation

Energy threshold very low: Ecm,min = mπ +mp ≈ 1.07 GeV

(Δ+ resonance: 1.232 GeV)

time



Putting all together: description of total cross section
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Many measurements available, still 
approximations necessary

• PDG: 9 resonances,
decay channels,
angular distributions

• Regge parametrization
at higher energy

• Direct contribution: 
fit to difference to data

SOPHIA  (Mücke et al. CPC124, 2000)
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SOPHIA



Lifetime of fluctuations
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Heisenberg uncertainty relation

Length scale (duration) of hadronic interaction

∆E ∆t ≈ 1

Vi = ρ, ω, ϕ, ...

k
Consider photon with momentum k

∆tint < 1fm≈ 5GeV−1

∆t ≈ 1
∆E

=
1�

k2 +m2
V − k

=
1

k(
�

1+m2
V /k2−1)

≈ 2k
m2

V

∆t ≈ 2k
m2

V
> ∆tintFluctuation long-lived for k > 3 GeV



Multiparticle production: vector meson dominance
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Photon is considered as superposition of ``bare´´ photon and hadronic fluctuation

Vi = ρ, ω, ϕ, ...

|γ� = |γbare�+Phad ∑
i

|Vi�

Multiparticle 
production

Elastic scattering

ρ, ω, ϕ, ...
γγ

p/n
p/n

p/n

ρ, ω, ϕ, ...

Cross section for hadronic interaction ~1/300 smaller than for pi-p interactions

ρ, ω, ϕ, ...

Phad ≈
1

300
. . .

1
250



Comparison with measured partial cross sections
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SOPHIA  (Mücke et al. CPC124, 2000)



Comparison with measured partial cross sections
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Resonance region

Continuum region
(multiparticle production)



Measurement of nucleus disintegration
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Ion beam

Target nucleus (at rest) 
needed to create photon
for interaction

Target: proton at rest

Electron beam

New particles:
pions, kaons, ...

Photoproduction

Photodissociation



Effective em. dissociation cross section
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RELDIS
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Main contribution: 
giant dipole resonance

Dominant emission processes:
• single nucleon
• quasi-deuteron
• alpha particle
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Projectile: 30 AGeV Pb,
different targets

(Smirnov, 2005)

FLUKA
RELDIS
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Energy considerations
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Energy of nucleus needed for formation of giant dipole resonance in CMB

s = (pγ + pA)2

= p2
γ + p2

A +2(pγ · pA)

= (Amp)2 +2AmpEγ

Nucleus at rest

13 MeV

Nucleus with EA in CMB field

s = (Amp)2 +2ECMB
γ EA(1− cosθ)

10-3 eV

Iron:      EA ~ 3 1020 eV
Helium:  EA ~ 2 1019 eV

ECMB
γ ≥ A

mpEγ
(1− cosθ)EA

Light nuclei disintegrate very fast while traveling through CMB



Example: resonances in HADRIN
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Note that again resonances are contained in some of
the channels.  The step of sampi ing rhe resonance
decay is repeated, if there are resonances among the

decay products of the first resonances, until all decay
products are stable hadrons. In our model the
resonances decay isotropically in rheir resr frame.

4. Lorentz transformation of the momenra and
energies of all particles produced inro the targer
nucleon rest frame. The events generated in this way
conserve energy, momentum, charge, baryon number,
and strangeness exactly. This feature is obtained
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Particle production in intermediate energy range:

Two-string models
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Example: p-C interaction at 30 GeV lab. momentum
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4

Figure 5: An example of reconstructed event from the 2007 run. The red lines correspond to the fitted tracks, the yellow
(grey) points to the used (unused) TPC clusters.
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Figure 6: Invariant mass distribution of reconstructed K0
S

candidates. Mean value of the peak is indicated. MC dis-
tribution (dashed histogram) is normalized to the data right
tail.

(iii) matching of track segments from different TPCs
into global tracks,

(iv) track fitting through the magnetic field and deter-
mination of track parameters at the first measured
TPC cluster,

p [GeV/c]
0 1 2 3 4 5

re
c

!

0.8

1

Figure 7: Track reconstruction efficiency for negatively
charged particles as a function of momentum in the polar
angle interval [100,140] mrad.

(v) determination of the interaction vertex as the in-
tersection point of the incoming beam particle with
the middle target plane,

(vi) refitting the particle trajectory using the interaction
vertex as an additional point and determining the
particle momentum at the interaction vertex and

Beam: p (31 GeV)

Secondary particles

Vertex TPCs

Main TPCs

Time-of-flight walls

NA61 experiment in CERN SPS beam

Typical particle multiplicities:  5 to 15 secondaries



Expectations from uncertainty relation
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�b

Assumptions:
• protons built up of partons
• partons liberated in collision process
• partons fragment into hadrons (pions, kaons,...) after interaction
• interaction viewed in c.m. system (other systems equally possible)

∆x ∆px � 1

Heisenberg uncertainty relation

R� = R/Γ = R
�

mp

Ep

�

R ≈ 1fm ≈ 5GeV−1

�p⊥� ∼ ∆p⊥ ∼ 1
R
≈ 200MeV�p�� ∼ ∆p� ≈

1
R� ≈

1
5

Ep

Longitudial momenta of secondaries Transverse momenta of secondaries



QCD-inspired interpretation: color flow (i)

One-gluon exchange: 
two color fields (strings) 
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QCD-inspired interpretation: color flow (ii)

Initial and final state radiation
does not change topology
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QCD-inspired interpretation: color flow (iii)

Two-gluon exchange: 
diffraction dissociation

DPMJET III, EPOS: detailed color flow simulation for each event
DPMJET II, SIBYLL, QGSJET 01: pomeron always only two-string configuration
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Simplest case: e+e- annihilation into quarks

Chain of hadrons

time

28

color field

String fragmentation

e+

e-

Annihilation at high energy

Quarks together are 
color-neutral system

u
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Fragmentation function (SIBYLL)

29

String characterized by momentum fractions of partons at ends

Estr =
1
2
√

s(x1 + x2)

pstr =
1
2
√

s(x1− x2)

Momentum fraction z
of new meson relative
to quark at string end

x1 x2

m2
⊥ = p2

⊥+m2

f (z) =
(1− z)a

z
exp

�
−

bm2
⊥

z

�



String fragmentation and rapidity

Example: 
q-qbar pair produced 
in e+e- annihilation

time

dN
dy

rapidity y 30

Rapidity

y =
1
2

ln
E + p�
E−P�

Rapidity of massless particles

y =
1
2

ln
1+ cosθ
1− cosθ

=− ln tan
θ
2

Pseudorapidity (all particles)

η =− ln tan
θ
2

height energy-independent,
width increases with energy

!""!!##"!"
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Rapidity and pseudorapidity
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Example: 100 GeV p-p collisions, 
              charged secondaries

Rapidity and pseudorapidity very similar
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Predictions of two-string models

Rapidity  y 

dN/dy

Two-string models:

• Feynman-scaling
• long-range correlations
• leading particle effect
• delayed threshold for 

baryon pair production

(Capella et al., Physics Reports 1994) 32

Feynman scaling 

Distribution independent of energy

dN
dx
≈ f̃ (x) x = E/Eprim

2E
dN
d3 p

=
dN

dy d2 p⊥
−→ f (xF , p⊥)



Momentum fractions: soft string ends

33

fq|nuc(x)∼
(1− x)3

(x2 +µ2)
1
4

fq|nuc(x)∼
(1− x)

3
2

√
x

fq|mes(x)∼
1�

x(1− x)

Asymmetric momentum sharing of valence quarks: most energy given to di-quark

Quark in nucleon
(example: SIBYLL)

Many other parametrizations work well in describing data (example: DPMJET)

Sea quark momentum fractions

fqsea(x)∼
1
x

fqsea(x)∼
1√
xor
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NA22 European Hybrid Spectrometer data
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Secondary particle multiplicities
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Secondary particle multiplicities
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Power-law increase of number 
of secondary particles

nch ∼ s0.1

Leading particles



Interaction of hadrons with nuclei

b
projectile

σinel =
Z

d2�b

�
1−

A

∏
k=1

�
1−σNN

tot TN(�b−�sk)
��
≈

Z
d2�b

�
1− exp

�
−σNN

tot TA(�b)
��

Standard Glauber approximation:

σprod ≈
Z

d2�b
�
1− exp

�
−σNN

ine TA(�b)
��
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Coherent superposition 
of elementary nucleon-
nucleon interactions

sk



Example: proton-carbon cross section
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Superposition model: correct prediction of mean Xmax

56

42

39

24

iron nucleus

Depth X

Number of
nucleons without 
interaction

56

42
39

24
56 protons

iron

npart =
σFe−air

σp−air

Glauber approximation (unitarity)

Superposition and semi-superposition models 
applicable to inclusive (averaged) observables

(J. Engel et al. PRD D46, 1992)
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String configuration for nucleus as target
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Proton

Nucleus

Spectator nucleons: remnant nucleus

New quark pair with
momentum fraction
1/x or 1/sqrt(x)



Leading particle effect and nuclei
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Comparison of low/intermediate energy models
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DPMJET II & III
(Ranft / Roesler, RE, Ranft, Bopp)

FLUKA
(Ferrari, Sala, Ranft, Roesler)

GHEISHA 
(Fesefeld)

UrQMD
(Bleicher et al.)

SOPHIA
(Mücke, RE, et al.)

RELDIS 
(Pshenichnov)

• microscopic (universal) model
• resonances for low energy hadron 

projectiles (HADRIN, NUCRIN)
• two- and multi-string model 

• microscopic (universal) model
• resonances (PEANUT), photodissociation
• two-string model, DPMJET at high energy

• parametrization of data (GEANT 3)
• wide range of projectiles/targets
• limited to Elab < 500 GeV

• combination of microscopic model with 
data parametrization (no Glauber calc.)
• optimized for interactions of nuclei

• dedicated photon-nucleon model
• resonances, two-strings, Elab < 500 GeV

• dedicated photodissociation model for 
nuclei, wide range of nuclei



Basic features of multiparticle production
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Particle production threshold (low energy)
• Resonances, nearly isotropic decay
• Energy loss ~20% in pγ interactions
• Photodissociation of nuclei

Multiparticle production (intermediate energy)
• Leading particle effect
- ~50% of energy carried by leading nucleon
- incoming proton: 66% proton, 33% neutron

• Secondary particles
- power-law increase of multiplicity
- quark counting: ~33% π0, 66% π±

- transverse momentum energy-independent
- baryons are pair-produced, delayed threshold
- scaling of secondary particle distributions

• Diffraction (rapidity gaps)
- elastic scattering & low-mass diffraction dissociation
- large multiplicity fluctuations



Appendix: Glauber approximation
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HIGH-ENERGY SCATTERING OF PROTONS BY NUCLEI 
R. J .  G L A U B E R  * 
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Abstract:  The theory of high-energy hadron-nucleus coll isions is discussed by means 
of the mult iple-diffract ion theory. Effects of the Coulomb field are accounted for 
in elast ic  scat ter ing by light and heavy nuclei.  Inelastic scattering is t reated by 
means of the shadowed single collision approximation at small  momentum t rans -  
fer  and the corresponding multiple collision expansion at large momentum t rans -  
fe rs .  The theory is compared with the measurements  of Bellettini et al. on pro-  
ton-nucleus scattering at 20 GeV/c by finding density distributions for the nuclei 
which provide l eas t - squares  fits to the data. The nucleon densities found are 
closely comparable in dimensions to the known charge densit ies.  The predicted 
sums of the angular distributions of elast ic  and inelastic scattering reproduce the 
experimental  angular distributions fair ly closely.  

i. INTRODUCTION 

An increasing number of experiments has been undertaken in recent 
years to study the scattering or production of high-energy particles in nu- 
clei. The electron scattering experiments, which are among the earliest 
of these, furnish an accurate determination of the nuclear charge distribu- 
tion. The use of protons or pions as projectiles in high-energy nuclear 
scattering experiments has, on the other hand, hardly been more than be- 
gun. We shall try to show in the present paper that such experiments can 
furnish a determination of the density distributions of nucleons comparable 
in accuracy with the known charge distributions. 

High-energy data on hadron scattering and production processes in nu- 
clei are conveniently analyzed by means of the multiple diffraction theory 
of Glauber [I, 2]. The application of the multiple diffraction theory to data 
on unstable particle production, for example, makes it possible to evaluate 
the  u n s t a b l e  p a r t i c l e - n u c l e o n  c r o s s  s e c t i o n  [3]. But  s u c h  a p p l i c a t i o n s  of the  
t h e o r y  r e q u i r e  k n o w l e d g e  of the  n u c l e o n  d e n s i t y  d i s t r i b u t i o n s  in nuc l e i ,  and 

* Research  supported in part by the Air  Force  Office of Scientific Research.  

Basic building blocks are
p-p and p-n scattering



Amplitude for proton-proton scattering
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Amplitude conventions (elastic scattering)

t = (k� − k)2

�q =�k� −�kKinematics

�k

�k�

High-energy approximation

Momentum transfer

dσela

dt
=

π
k2 | f (�q)|

2dσela

dΩ
= | f (�q)|2

t =−4k2
cms sin2(θ/2)≈−�q2

⊥



Elastic proton-proton scattering: data
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Approximation for p-p scattering amplitude
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fpp(q2) = fpp(0) e−
1
2 β2�q2

Ansatz: exponential in t =−�q2
⊥

normalization factor taken from optical theorem

σtot =
4π
k

ℑm( f (q2 → 0))

Optical theorem (applies to all scattering processes)

fpp(0) = (i+α)k σtot

4π

α =
ℜe f (q2 → 0)
ℑm f (q2 → 0)fpp(q2) = (i+α)k σtot

4π
e−

1
2 β2�q2

Alpha parameter

slope parameter



Relation between parameters
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Valid in approximation of exponential t behaviour

dσela

dt
=

1
16π

(1+α2)σ2
tote

−β2|t|

σela =
σ2

tot
16πβ2 (1+α2)

Only 3 parameters out of the 4 need to be known, for example σtot, σela, α

Relations often used to measure total cross section

slope in dσ/dt plot



Parametrization of proton-proton data 
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Parametrization of proton-neutron data
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Glauber model in a nutshell
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6. Nuclear interactions at intermediate and

high energy

Ralph Engel

Forschungszentrum Karlsruhe, Karlsruhe, Germany
Ralph.Engel@ik.fzk.de

6.1 The Glauber model

Neglecting spin effects, the scattering amplitude of an arbitrary interaction,
f(s, q), can be expressed as an impact parameter integral

f(s, q2) =
ik

2π

∫

eiq·bΓ (b)d2b, (1)

where q denotes the momentum transfer and b is the impact parameter of
the collision. The impact parameter amplitude Γ (b) can be written in terms
of the phase shift function χ(b) as

Γ (b) = 1 − eiχ(b). (2)

The key idea of the Glauber model is the assumption that, in the presence of
multiple scattering sources and negligible recoil, the phase shifts of individual
scattering processes sum up linearly [1, 2, 3, 4]. For example, a scattering
process with two target particles is written as

ΓGlauber(b) = 1 − ei(χ1(b)+χ2(b)) = 1 − (1 − Γ1)(1 − Γ2), (3)

where we have used Γ1,2 = 1 − exp(iχ1,2). With this assumption one gets for
the scattering amplitude of a hadron h interacting with a nucleus of mass
number A

fhA
fi (s, q2) =

ik

2π

∫

eiq·bψ"
f (r1 . . . rA)ΓhA(b, s1 . . . sA)ψi(r1 . . . rA)d2b

A
∏

j=1

d3rj .

(4)
Here ψi and ψf are the wave functions of the nucleus in the initial and final
state, respectively. The positions of the nucleons of the nucleus are rj and
the projections of these vectors on the plane perpendicular to the momentum
vector k are given by sj . The corresponding impact parameter amplitude
reads
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projectile

Transformation of amplitude in impact parameter (vector transverse to collision axis)
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Phase shift function
(complex valued)
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Scattering off two nucleons



Glauber expression for scattering amplitude
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2 Ralph Engel

ΓhA(b, s1 . . . sA) = 1 − exp







i
A

∑

j=1

χj(b − sj)







= 1 −
A

∏

j=1

[1 − ΓhN(b − sj)] ,

(5)
where ΓhN is the amplitude for the interaction of the hadron h with one
nucleon N = p, n. Applying the optical theorem, the total and elastic cross
sections follow from

σtot
hA =

4π

|k|
"m

{

fhA
ii (s, q2 → 0)

}

= 2$e

∫

Γ̃hA(b)d2b (6)

σela
hA =

∫

1

|k|2
∣

∣fhA
ii (s, q2)

∣

∣

2
d2q =

∫

∣

∣

∣
Γ̃hA(b)

∣

∣

∣

2
d2b, (7)

where we have introduced the impact parameter amplitude folded with the
nucleus wave function

Γ̃hA(b) =

∫

ψ!
i (r1 . . .rA)







1 −
A

∏

j=1

[1 − ΓhN (b − sj)]







ψi(r1 . . . rA)
A

∏

j=1

d3rj .

(8)
Neglecting correlations between the nucleons in the nucleus one can write

ψ!
i (r1 . . . rA)ψi(r1 . . . rA) =

A
∏

j=1

ρj(rj) (9)

with ρj being the single nucleon density for nucleon j. The nucleon densities
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6. Nuclear interactions at intermediate and high energy 3

The sum of the cross sections for elastic and quasi-elastic scattering can
be calculated by using the completeness relation
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For numerical calculations, one needs to know the hadron-nucleon am-
plitudes Γj(b) and the corresponding nuclear densities ρj(rj). The hadron-
nucleon amplitudes are often approximated by a Gaussian function in impact
parameter space
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where σtot
hN is the total hadron-nucleon cross section, ρhN denotes the ratio of

the real to imaginary part of the forward scattering amplitude and Bel
hN is the

slope of the elastic scattering cross section. This approximation can be used
a low and intermediate energies but is expected to break down at very high
energy. If the hadron-nucleon amplitude approaches the black disk limit the
overall shape in impact parameter changes [5, 6].

The nuclear densities of light nuclei up to A = 18 are reasonably well
represented by those of the harmonic oscillator potential1. The single nucleon
densities for the s- and p-shells are
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The parameter a0 is related to the average squared radius by
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4

A

)

a2
0. (16)

Tables for a0 for different nuclei are given in [7]. The RMS radius is about
2.46 fm for carbon, 2.54 fm for nitrogen, 2.72 fm for oxygen, 4.21 fm for copper,
and 6.38 fm for gold.

The nuclear densities of heavy nuclei can be described by the Woods-Saxon
parametrization

ρ(r) =
ρ0
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(

|r|−r0
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) with ρ0 =
3

4πr3
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1

1 + (a0π/r0)2
. (17)

1 A parabolic Fermi function is suited to describe the nuclear density of helium [7].

Light nuclei up to A = 18: potential of harmonic oscillator
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Completeness relation for wave function in final state if summed over all possible configurations
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No need to know all quasi-elastic final states in detail
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���
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Elastic scattering Elastic+quasi-elastic scattering

final state = initial state
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sum over all final states
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Fig .  4. The  e x p e r i m e n t a l  da ta  of r e f .  [4] on the  s c a t t e r i n g  of 21.5 G e V / c  p r o t o n s  by 
C a r e  shown t o g e t h e r  with  the  r e s u l t  of the  be s t  f i t .  E l a s t i c  and  i n e l a s t i c  c o n t r i b u -  

t ions  a r e  shown s e p a r a t e l y .  

region is obtained by using eq. (14) instead of eq. (18) but there  is no sub- 
stantial  difference between the resu l t s  given by eqs. (4) and (6). 

We have l is ted in table 1 the values of the p a r a m e t e r s  we have found for  
the nucleon densit ies in the light nuclei. The e r r o r s  ass igned to the radial  
p a r a m e t e r s  a re  der ived f rom the c r i t e r ion  X 2 --< X~nin + 1. For  the light nu- 
clei other than carbon we have indicated the e r r o r s  in paren theses  s ince 
for  these cases  the X2min values obtained are  re la t ive ly  large.  Such e r r o r s  
lack t rue  s ta t is t ical  s ignif icance and a re  only intended to be suggestive.  We 
have also l is ted for  compar i son  in table 1 the values of the r m s  radius  of 
the charge distr ibution found in e lec t ron  sca t te r ing  experiments .  Our de- 
te rminat ions  of the r m s  radius  of the nuclear  density a re  seen t o  c o r r e -  

Coherent (elastic) scattering

Incoherent (quasi-elastic) scattering

(Glauber & Matthiae, NPB 1970)

Glauber approximation works very well


