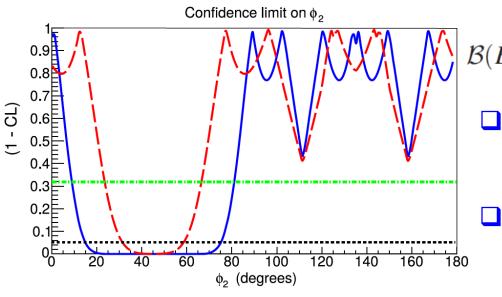

Gagan Mohanty

DHEP Annual Meeting May 8-9, 2018

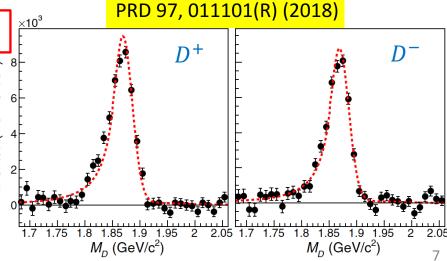
Group in one slide



- High visibility and impact in terms of contribution
- Established leadership within Belle and Belle-II collaborations

Measurement of the branching fraction and *CP* asymmetry in $B^0 \rightarrow \pi^0 \pi^0$ decays, and an improved constraint on ϕ_2

tifr


PRD 96, 032007 (2017)

$$\mathcal{B}(B^0 \to \pi^0 \pi^0) = (1.31 \pm 0.19 \pm 0.19) \times 10^{-6}$$

 $A_{CP} = +0.14 \pm 0.36 \pm 0.10$

An isospin analysis including results from B → ππ decays excludes the UT angle φ₂ from [15.5°,75.0°] at 95% CL
 Belle II will allow stronger constraint on this important angle

Search for *CP* violation in the $D^+ \rightarrow \pi^+ \pi^0$ decay at Belle $A_{CP}(D^+ \rightarrow \pi^+ \pi^0) = (+2.31 \pm 1.24 \pm 0.23)\%^{\text{form}}$

a precision of three per mille

With 50 times more data than its predecessor, Belle II will be a unique instrument to address several grand questions

EM Calorimeter: CsI(TI), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps)

electrons (7 GeV)

Beryllium beam pipe (2 cm diameter)

Vertex Detector: 2-layer pixel (PXD) + 4-layer strip (SVD)

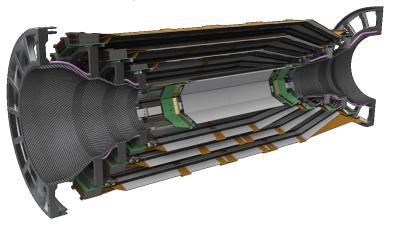
> Central Drift Chamber He(50%)+C₂H₆(50%), small cells, long lever arm, fast electronics

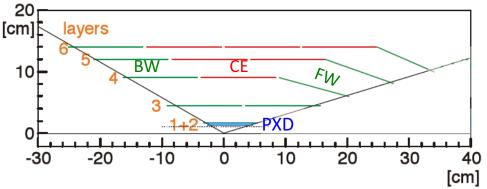
K_L and muon detector: Resistive Plate Counter (barrel outer), plastic scintillator + WLS fiber + SiPM (end-cap and inner 2 barrel)

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (forward)

positrons (4 GeV)

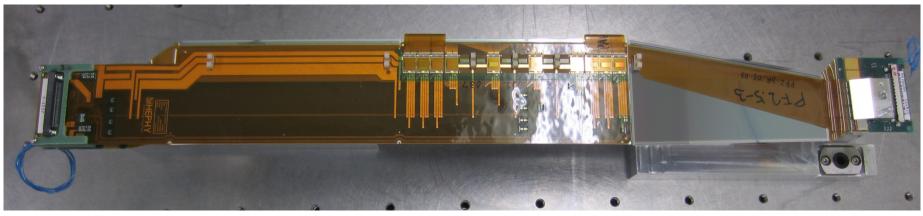
- Are there any new CPV phases? (Search for CPV in B and D decays)
- Any right-handed current from new physics?
- Are there any imprints of physics beyond the SM in flavor changing neutral current transitions in the quark sector? (Search for rare FCNC decays)
- Neutrino oscillation being firmly established, what are the implication of lepton flavor violation in charged lepton sector? (Search for LFV in tau decays)
- Are there any cousins of Mr. Higgs? Charged Higgs?


- Understanding exotic QCD states? Tetraquark, pentaquark, hybrid?
- Can we chase down dark matter from bottom? Hidden dark sector?


Belle-II SVD and TIFR

- SVD will play a key role in physics harvesting
 - 1) Precise decay vertex determination
 - 2) Low-momentum tracking & particle ID
 - 3) K_s reconstruction

Layer	Ladder	Institute
3	7(+1)	Melbourne
4	10(+2)	TIFR Mumbai
5	12(+3)	HEPHY Vienna
6	16(+4)	Kavli IPMU


Layer#	Sensor/ladder	Origami	Length	Radius	Slant angle	Occupancy
3	2	0	262 mm	38 mm	0°	6.7%
4	3	1	390 mm	80 mm	11.9°	2.7%
5	4	2	515 mm	104 mm	17.2°	1.3%
6	5	3	645 mm	135 mm	21.1°	0.9%

Involved in such state-of-the-art detector project for the 1st time

An assembled SVD-L4 module

				Cluster charge, P-side:N-side
Sensor	ΔΧ	ΔΥ	ΔΖ	100 x10 ³ Entries 28789 Mean x 3.814e+04
	(µm)	(µm)	(µm)	90 Mean y 3.121e+04 RMS x 1.551e+04 RMS y 1.465e+04 70
BW	-49	-35	-34	60 50 20
CE	-6	-15	-22	
FW	-7	-47	94	10 0 10 0 10 10 10 10 10 10 10
				Cluster charge [n side] s

Cluster charge [n side] e

Design specs: $\pm 150 \mu m (\Delta X, \Delta Y) \pm 250 \mu m (\Delta Z)$

Before reaching this point, needed to pass through several stages of a stringent international technical review

□ Focus will continue to be on science → consolidate where expertise lies and venture into new areas e.g., rare FCNC B decays and LFV in tau decays

□ Take a good care of SVD → operation maintenance and Q&A shifts

Work towards how to get best possible performance from that detector or overall experiment
analysis and performance improvement

11:00 - 11:40 Session on Belle

Convener: Sudeshna Banerjee (Department of High Energy Physics, TIFR)

- 11:00 Moving from Belle to Belle II 10' Speaker: Gagan Mohanty (DHEP, TIFR)
- 11:10 Building the Layer 4 of Belle II SVD 15' Speaker: K Kameshwar Rao (TIFR)

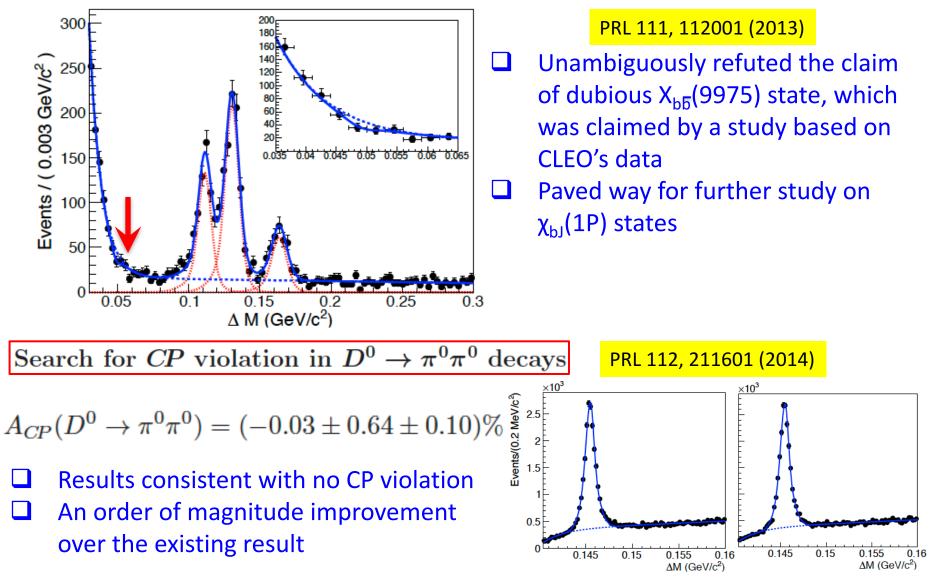
11:25 Getting Ready for Belle II 15' Speaker: K. P PRASANTH KRISHNAN (TIFR)

Also, don't forget about the poster of Debashis Sahoo on display

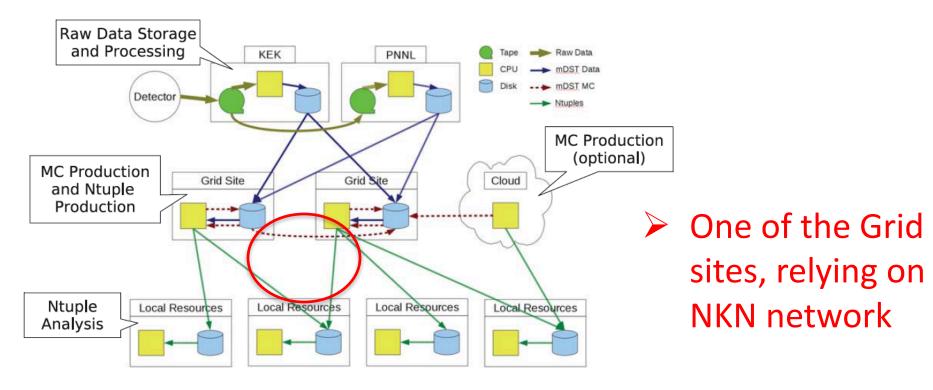
Achievements During 2012 – 2017

Detector: Successful Si microstrip sensor R&D; Led the design, prototyping and construction of the Belle-II SVD layer 4 <u>Physics</u>: Thrust area of CP violation and rare decays of charm and beauty mesons as well as bottommonium spectroscopy

TIFR-Belle (Mohanty) PhD (2), Postdoc Mentee (1) <u>HRD Highlights</u>: S. Sandilya, postdoc @ Cincinnati; N.K. Nisar, postdoc @ Pittsburg; V. Gaur, 2nd postdoc @ VT

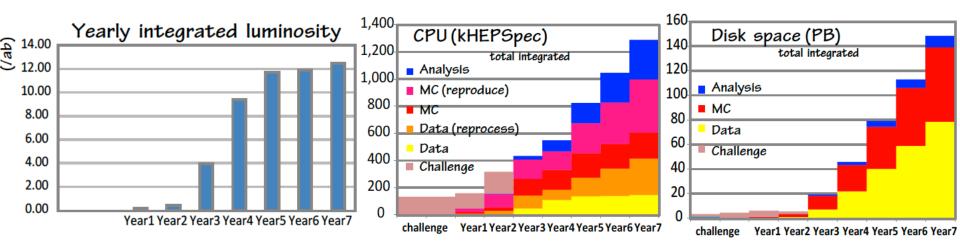

Journal Publications: 25 physics, 12 detector Internal Notes: 10

Leadership: Leader of Belle Hadronic B-Decay Analysis Group, Belle II SVD PubBoard Chair, Members of Belle and Belle-II Executive Boards Talks & Outreach: Invited plenary talk (10), parallel session (4) at int'l conference (including one @ ICHEP); similar number of talks, colloquia and lectures within India



Search for Bottomonium States in Exclusive Radiative $\Upsilon(2S)$ Decays

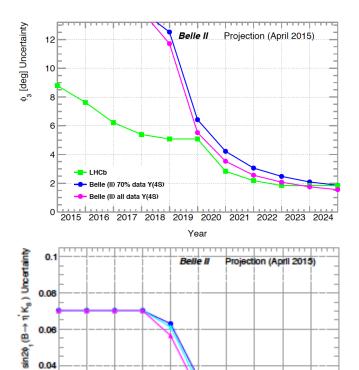
□ Contribution to Belle II computing (CPU: 24 kHepSPEC, storage: 750 TB) over the next five years → 2%
 □ Monte Carlo production and storage of trimmed data, catering to needs of (mostly local) Belle II community



Belle II Computing Need

Experiment	Event size	Rate @ Storage	Rate@Storage	
	[kB]	[event/sec]	[MB/sec]	l
Belle II	300	6,000	1,800	(@max. luminosity)
ALICE (Pb-Pb)	50,000	100	4,000	
ALICE (p-p)	2,000	100	200	
ATLAS	1,500	600	700	
CMS	1,500	150	225 (<~1000)	
LHCb	55	4,500	250	
	(11)	un animante cos sam	in 2011/2012 mms)	<i>P</i>

(LHC experiments : as seen in 2011/2012 runs)



Belle II vs. LHCb

Observable	Expected th.	Expected exp.	Facility
	accuracy	uncertainty	, i i i i i i i i i i i i i i i i i i i
CKM matrix			
$ V_{us} [K \rightarrow \pi \ell \nu]$	**	0.1%	K-factory
$ V_{cb} [B \rightarrow X_c \ell \nu]$	**	1%	Belle II
$ V_{ub} [B_d \rightarrow \pi \ell \nu]$	*	4%	Belle II
$\sin(2\phi_1) [c\bar{c}K_S^0]$	***	$8 \cdot 10^{-3}$	Belle II/LHCb
φ ₂		1.5°	Belle II
ϕ_3	***	30	LHCb
CPV			
$S(B_s \to \psi \phi)$	**	0.01	LHCb
$S(B_s \to \phi \phi)$	**	0.05	LHCb
$S(B_d \to \phi K)$	***	0.05	Belle II/LHCb
$S(B_d \to \eta' K)$	***	0.02	Belle II
$S(B_d \to K^*(\to K^0_S \pi^0)\gamma))$	***	0.03	Belle II
$S(B_s \to \phi \gamma))$	***	0.05	LHCb
$S(B_d \to \rho \gamma))$		0.15	Belle II
A_{SL}^d	***	0.001	LHCb
A_{SL}^s	***	0.001	LHCb
$A_{CP}(B_d \rightarrow s\gamma)$	*	0.005	Belle II
rare decays			
$\mathcal{B}(B \rightarrow \tau \nu)$	**	3%	Belle II
$\mathcal{B}(B \to D\tau\nu)$		3%	Belle II
$\mathcal{B}(B_d \to \mu\nu)$	**	6%	Belle II
${\cal B}(B_s o \mu \mu)$	***	10%	LHCb
zero of $A_{FB}(B \rightarrow K^* \mu \mu)$	**	0.05	LHCb
$\mathcal{B}(B \to K^{(*)}\nu\nu)$	***	30%	Belle II
$\mathcal{B}(B \to s\gamma)$		4%	Belle II
$\mathcal{B}(B_s \to \gamma \gamma)$		$0.25 \cdot 10^{-6}$	Belle II (with 5 ab ⁻¹)
$\mathcal{B}(K \rightarrow \pi \nu \nu)$	**	10%	K-factory
$\mathcal{B}(K \to e \pi \nu) / \mathcal{B}(K \to \mu \pi \nu)$	***	0.1%	K-factory
charm and τ			
$B(\tau \rightarrow \mu \gamma)$	***	$3 \cdot 10^{-9}$	Belle II
$ q/p _D$	***	0.03	Belle II
$arg(q/p)_D$	***	1.5°	Belle II

- Great for neutral and missing energy modes
- Inclusive measurement: OK
- Excellent flavor tagging and K_s reconstruction

- LHCE

2015

Belle (II) beseline: 70% data Y(48) Belle (II) improved K_:70% data Y(48) Belle (II) improved K_: all data Y(48)

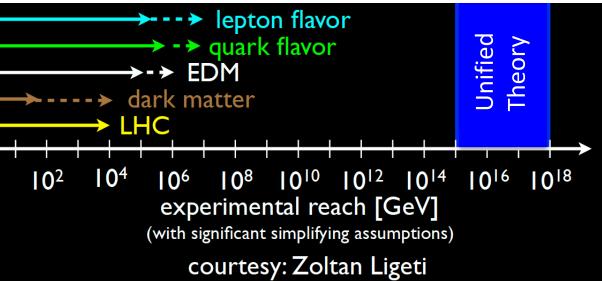
2016 2017 2018 2019 2020 2021 2022 2023 2024


Year

0.02

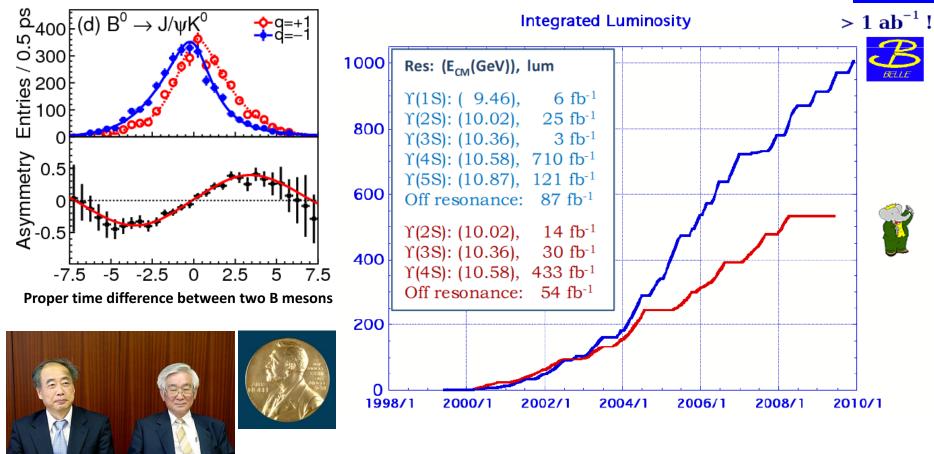
Moving from KEKB to SuperKEKB



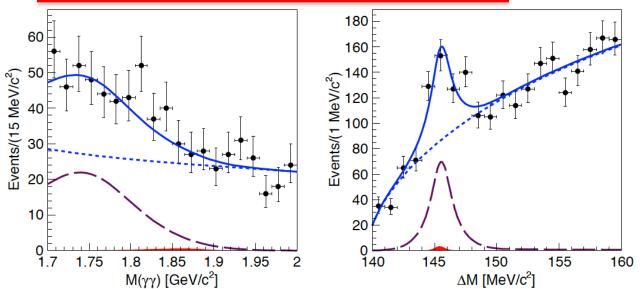


Power of Luminosity Frontier

- Complementary to the energy frontier
- Can probe a mass scale, beyond the reach of LHC
- Even for the minimal flavor violating (SMlike) case
- Win-win situation if LHC finds new physics to decipher its flavor structure
- Even otherwise, can give an approximate scale of new physics



Most Visible Legacy of Belle


 Established beyond any doubt that the Kobayashi-Maskawa phase is responsible for CP violation (CPV) within the standard model
 Led to the 2009 Physics Nobel prize to Kobayashi and Maskawa

Other Highlighted Physics Papers

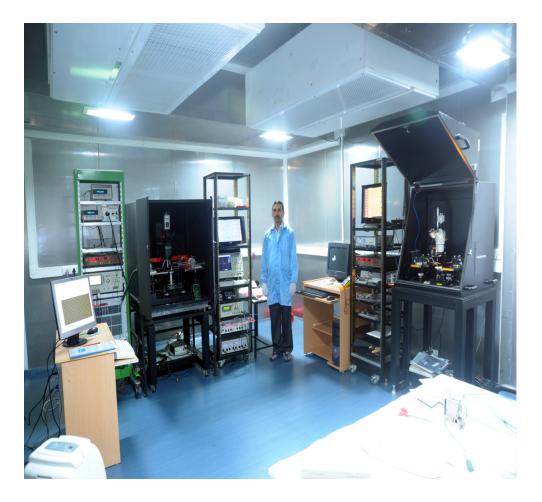
Measurements of Branching Fractions and Direct *CP* Asymmetries for $B \to K\pi, B \to \pi\pi$ and $B \to KK$ Decays PRD 87, 031103(R) (2013)

We report measurements of the branching fractions and direct CP asymmetries (\mathcal{A}_{CP}) for $B \to K\pi, \pi\pi$ and KK decays (but not $\pi^0\pi^0$) based on the final data sample of 772 × 10⁶ $B\overline{B}$ pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We set a 90% confidence-level upper limit for K^+K^- at 2.0×10^{-7} ; all other decays are observed with branching fractions ranging from 10^{-6} to 10^{-5} . In the $B^0/\overline{B}^0 \to K^{\pm}\pi^{\mp}$ mode, we confirm Belle's previously reported large \mathcal{A}_{CP} with a value of $-0.069 \pm 0.014 \pm 0.007$ and a significance of 4.4σ . For all other flavor-specific modes, we find \mathcal{A}_{CP} values consistent with zero, including $\mathcal{A}_{CP}(K^+\pi^0) = +0.043 \pm 0.024 \pm 0.007$ with 1.8σ significance. The difference of CP asymmetry between $B^{\pm} \to K^{\pm}\pi^0$ and $B^0/\overline{B}^0 \to K^{\pm}\pi^{\mp}$ is found to be $\Delta \mathcal{A}_{K\pi} \equiv \mathcal{A}_{CP}(K^+\pi^0) - \mathcal{A}_{CP}(K^+\pi^-) = +0.112 \pm 0.027 \pm 0.007$ with 4.0σ significance. We also calculate the ratios of partial widths for the $B \to K\pi$ decays. Using our results, we test the validity of the sum rule $\mathcal{A}_{CP}(K^+\pi^-) + \mathcal{A}_{CP}(K^0\pi^+) \frac{\Gamma(K^0\pi^+)}{\Gamma(K^+\pi^-)} - \mathcal{A}_{CP}(K^+\pi^0) - \mathcal{A}_{CP}(K^0\pi^0) \frac{2\Gamma(K^0\pi^0)}{\Gamma(K^+\pi^-)} = 0$ and obtain a sum of $-0.270 \pm 0.132 \pm 0.060$ with 1.9σ significance.

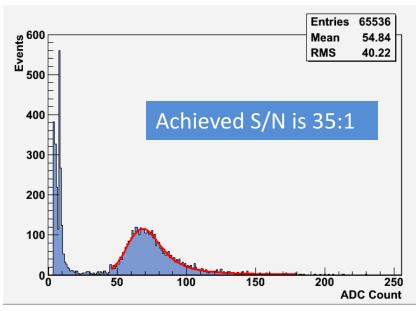
tifr

PRD 93, 051102(R) (2016)

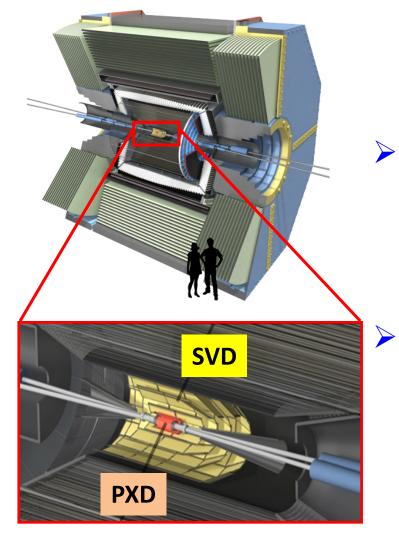
- A nice channel for NP, which can only be studied at e⁺e⁻ flavor factories
- Set world's best limit (8.5×10⁻⁷) in absence of a signal



- Search for new sources of CP violation in B-meson decays S. Mohanty
- □ Charmless hadronic B decays → A. Basith (+V. Gaur)
- □ Search for LFV in tau decays → D. Sahoo
- Continue to lead several front-ranking HBD analyses
 G.B. Mohanty
- Now another feather on the cap: physics coordinator


Silicon Microstrip Sensor R&D

Design, fabrication and characterization of the first AC-coupled silicon microstrip sensors in India, T. Aziz *et al.*, JINST **9** (2014) P06008



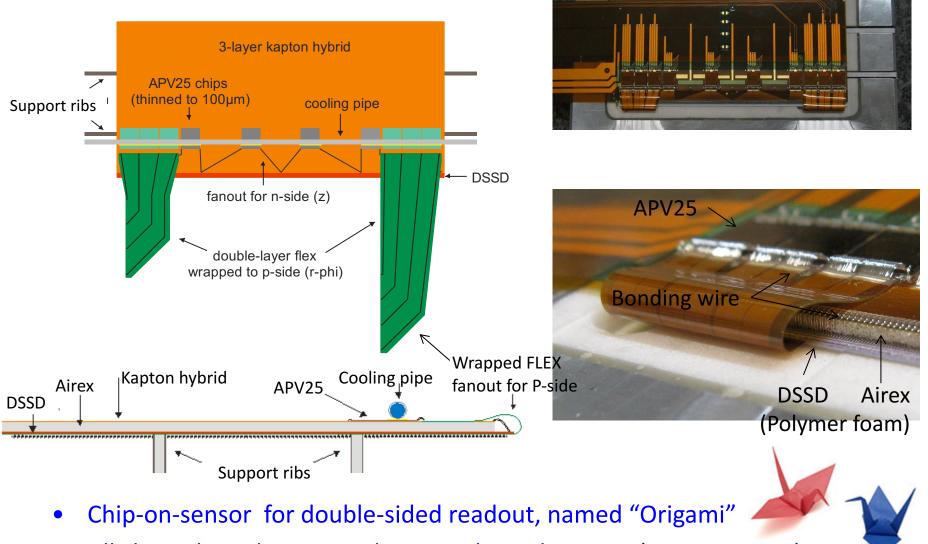
Belle-II VXD: What, Why and How...

> A sophisticated vertexing and inner tracking system:

- Determine the vertex position of the weakly decaying particles
- Precisely measure the track position and momentum for low-p_T tracks

Composed of:

- a) Pixel detector (PXD)
- b) Silicon micro-vertex detector (SVD)
 - Double-sided Si microstrip sensors


Requirements:

- Fast to operate in high rate environment
- Excellent spatial resolution (~15 $\mu m)$
- Radiation hard (up to 100 kGray)
- Good tracking capability to track charged particles down to 50 MeV in $\ensuremath{p_{T}}$

Origami Chip-on-Sensor Concept

• All chips aligned on one side \rightarrow single cooling pipe (Ave. 0.59% X₀)