CORSIKA Code

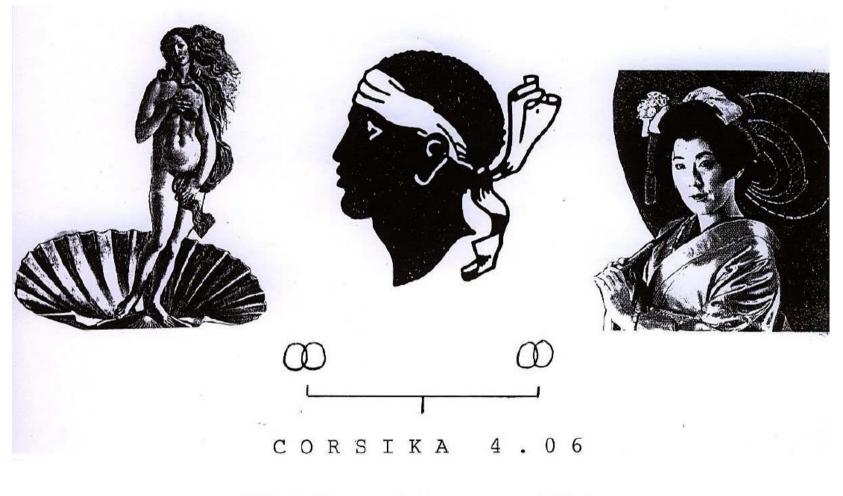
Tanguy Pierog and Dieter Heck

Karlsruhe Institut of Technology ,Institut für Kernphysik, Karlsruhe, Germany

CORSIKA School 2010, Ooty, India December the 17th 2010

Outline

- Introduction
 - Origin
 - Developments
 - 🗢 Users
- Technicalities
- New development


Origin

Introductory talk given by J. Knapp

Reminder :

COsmic Ray SImulations for KASCADE

- 1989 : original design optimized for vertical showers on a flat array detector using monte-carlo technique
- 1994< : extension to different type of experiments</p>
 - Cherenkov, fluorescence light, inclined showers, ...
- 2010< : extension to new type of simulations</p>
 - cascade equations, parallelization, different media ...

Wedding of the year 1994.

Introduction

Technicalities

New Developments

CORSIKA Development

1994 CORSIKA Vers. 4.06

- ➡ GHEISHA (Fesefeldt, 1985):
 - Iow-energy hadronic interactions
- VENUS (Werner, 1993):
 - high-energy hadronic interactions
- CERENKOV (HEGRA Collaboration, 1993):
 - treatment of Cherenkov radiation

CORSIKA Development

1997 CORSIKA Vers. 5.20

- SIBYLL (Fletcher, Gaisser et al., 1994):
 - high-energy hadronic interactions

QGSJET (Kalmykov et al., 1993):

- high-energy hadronic interactions
- **DPMJET** (Ranft, 1995):

high-energy hadronic interactions

- 2000 CORSIKA Vers. 6.00
 - NEXUS 2 (Drescher et al., 2001):
 - high-energy hadronic interactions
 - CURVED (Schdöder, 2001):
 - option for very inclined showers
 - IACT (Bernlöhr, 2000):
 - Cherenkov routines incl. telescopes
 - URQMD (Bleicher et al., 1999):
 - Iow-energy hadronic interactions

Technicalities

- 2004 CORSIKA Vers. 6.20
 - PRESHOWER (Homola et al., 2004):
 - UHE primary gammas
 - FLUKA (Fassò, Ferrari et al., 2001):
 - Iow-energy hadronic interactions
 - NUPRIM (Ambrosio, Pisanti et al., 2003):
 - primary neutrinos (HERWIG)
 - muons (Bottai & Perrone, 2001):
 - improved muon interactions
 - SLANT option (Heck):
 - slant depth (instead of vertical depth)

Introduction

Technicalities

New Developments

- 2006 CORSIKA Vers. 6.500
 - QGSJETII-3 (Ostapchenko, 2006):
 - high-energy hadronic interactions
 - NEXUS 3.97 (Pierog et al., 2003):
 - UPWARD (for all particles)
 - upward going particles and showers
 - ./corsika-install (Pierog):
 - automated installation of CORSIKA

Introduction

Technicalities

New Developments

CORSIKA Development

2007 CORSIKA Vers. 6.600

EPOS 1.6 (Werner et al., 2006):

high-energy hadronic interactions

2008 CORSIKA Vers. 6.760

CHARM option (Heck):

treatment of charmed hadrons (PYTHIA)

Fechnicalities

- 2009 CORSIKA Vers. 6.900
 - EPOS 1.99 (Pierog et al., 2009):
 - update of high-energy hadronic interactions
 - ./coconut (Ulrich):
 - installation of CORSIKA using GNU standard
- 2010 CORSIKA Vers. 6.970
 - EHISTORY option (Heck):
 - history of produced muons up to grand-mother
 - TAULEP option (Heck):
 - treatment of Tau lepton

Users

am	=	Armenia
ar	=	Argentina
at	=	Austria
au	=	Australia
be	=	Belgium
bg	=	Bulgaria
bo	=	Bolivia
br	=	Brazil
са	=	Canada
ch	=	Switzerland
cn	=	China
CZ	=	Czech Republic
de	=	Germany
dk	=	Denmark
dz	=	Algeria
es	=	Spain

- fi = Finland
- fr = France
- ge = Georgia
- gr = Greece
- hk = Hong Kong
- hr = Croatia
- ie = Ireland
- il = Israel
- in = India
- ir = Iran
- it = Italy
- jp = Japan
- kr = Korea
- kz = Kazakstan
- mx = Mexico
- nl = Netherlands

- pe = Peru
- pl = Poland
- pt = Portugal
- ro = Rumania
- ru = Russia
- se = Sweden
- si = Slovenia
- tw = Taiwan
- ua = Ukraine
- uk = United Kingdom
- edu/org = USA
 - ve = Venezuela
 - vn = Vietnam
 - yu = Serbia
 - za = Republic South Africa
 - nl = Netherlands

In 47 countries ~ 750 registered CORSIKA users (outside FZKA).

Experiments

AGASA ALEPH ALICE AMANDA **ANTARES ARGO-YBJ** Auger (PAO) Baikal CACTUS CAKE CANGOROO CASA-BLANCA USA CASA-MIA CAT CELESTE Chacaltaya CMS CORAL DECOR

Japan Switzerland Switzerland Antarctica France China (Tibet) Argentina Russia USA USA Australia USA France France Bolivia Switzerland Switzerland Russia

DICE USA **EAS-TOP** Italy EAS-1000 Russia Fly's Eye USA Frejus France GRAAL Spain GRAPES India Guwahati India Havera Park UK **HEGRA-AIROBICC** Spain Spain **HEGRA-CT HESS** HiRes USA IceCube **JEM-EUSO** space KASCADE-Grande LOFAR LOPES L3-cosmic Switzerland

Namibia Antarctica Germany Netherland Germany

MACRO Italy MAGIC Spain MAKET-ANI Armenia **MILAGRO** USA NEMO France **NESTOR** Greece NuTel USA (Hawaii) Tajikistan PAMIR Sky-View Germany (NRW) STACEE USA TACTIC India **Telescope Array USA THEMISTOCLE** France TIBET China (Tibet) TUNKA Russia VERITAS USA WACT USA WILLI Rumania WHIPPLE USA

CORSIKA is used for \sim 57 cosmic ray experiments.

Technicalities

Technicalities

source code :

→ ~ 69 500 lines (without external programs) ~ 290 routines

optional code

- ~ 50 preprocessor options selectable during installation with ./coconut
- program language (portability)
 - Fortran 77 / 90 + some few C-routines
- steering input :
 - free format with key words + parameters
 - ~ 90 key words
- documentation:
 - physics: FZKA 6019 (1998)
 - User's Guide: http://www-ik.fzk.de/corsika/
 - variables used in COMMONS
 - list in corsika.h
- availability:
 - download from anonymous ftp

Monte Carlo Simulations of EAS

Random Numbers

Environment:

- → atmosphere (composition, density ∝e^{+nc})
- Earth magnetic field (strength, orientation)
- Particles:
 - type, energy, position, direction, time
- Range estimation:
 - ightarrow cross section σ
 - 🔹 life time τ

Particle transport:

- ionization energy loss dE/dx
- multiple scattering (for leptons)
- deflection in Earth magnetic field
- particle reaches detector or cut
- Interaction / decay with production of secondaries:
 - high-energy hadronic interaction model
 - Iow-energy hadronic interaction model
 - particle decay (branching ratio > 1 %)
 - electromagnetic interaction (EGS4)
- Secondary particles:
 - store particles on stack

Fechnicalities

Random Number Generator

Key point of any monte carlo :

- CORSIKA uses the random number generator RMMARD
 - modification of CERN random generator RM48 with extension to 5 independent sequences
- Range: 0 < RNDM < 1</p>
- Precision: 48 significant bits ~ 4.10⁻¹⁵
- Sequence length: 2¹¹⁴ (~10⁴³) random numbers
- Seed: every integer number I with 1 ≤ I ≤ 900 000 000 starts an independent random number sequence
 - different seed = different shower

Monte Carlo Simulations of EAS

Random Numbers

Environment:

- → atmosphere (composition, density ∝e^{+nc})
- Earth magnetic field (strength, orientation)

Particles:

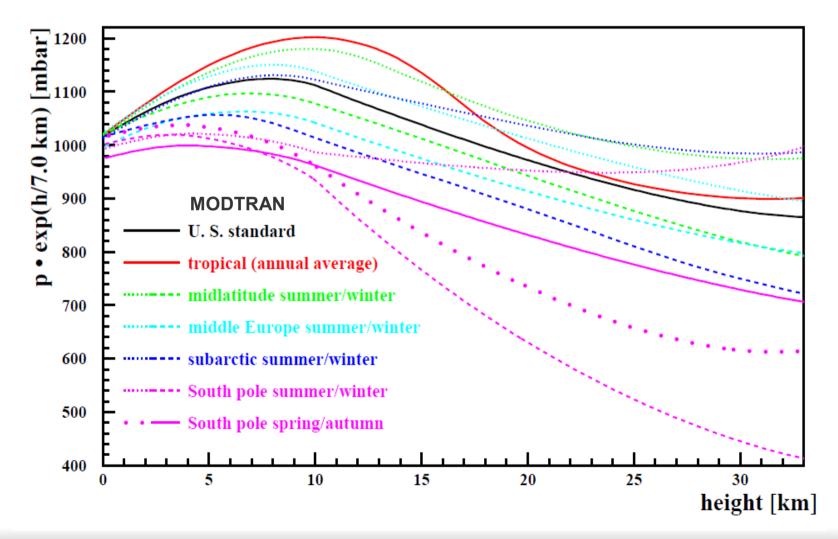
 type, energy, position, direction, time

Range estimation:

- ightarrow cross section σ
- rightarrow life time au

Particle transport:

- ionization energy loss dE/dx
- multiple scattering (for leptons)
- deflection in Earth magnetic field
- particle reaches detector or cut
- Interaction / decay with production of secondaries:
 - high-energy hadronic interaction model
 - Iow-energy hadronic interaction model
 - particle decay (branching ratio > 1 %)
 - electromagnetic interaction (EGS4)
- Secondary particles:
 - store particles on stack

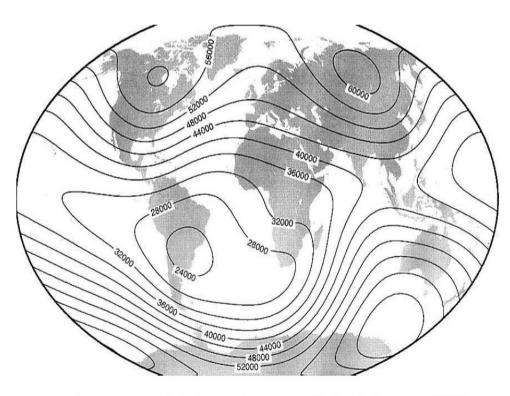

Technicalities

New Developments

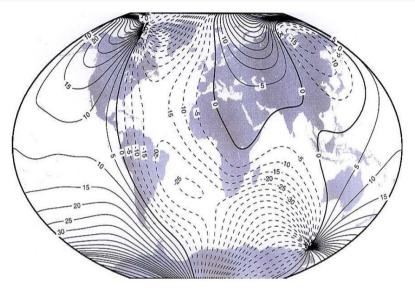
Atmosphere

Different atmospheres available

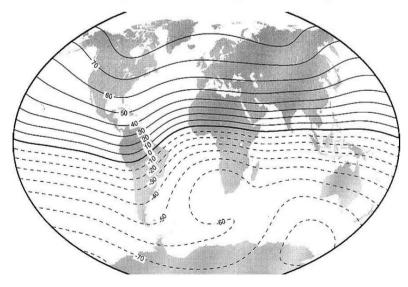
default : US standard


CORSIKA School Dec 2010

T. Pierog, KIT - 18/37


Technicalities

Earth Magnetic Field


 Earth Magnetic Field has to be defined according to experiment position on Earth

Total strength (nT) of Earth magnetic field for year 2000.

Declination (degrees) of Earth magnetic field for year 2000.

Inclination (degrees) of Earth magnetic field for year 2000.

T. Pierog, KIT - 19/37

Monte Carlo Simulations of EAS

Random Numbers

Environment:

- → atmosphere (composition, density ∝e^{+/∞})
- Earth magnetic field (strength, orientation)

Particles:

 type, energy, position, direction, time

Range estimation:

- ightarrow cross section σ
- rightarrow life time au

Particle transport:

- ionization energy loss dE/dx
- multiple scattering (for leptons)
- deflection in Earth magnetic field
- particle reaches detector or cut
- Interaction / decay with production of secondaries:
 - high-energy hadronic interaction model
 - Iow-energy hadronic interaction model
 - particle decay (branching ratio > 1 %)
 - electromagnetic interaction (EGS4)
- Secondary particles:
 - store particles on stack

Particles

Identification	Particle	Identification	Particle	Identification	Particle	Identification	Particle
1	γ	17	η	50	ω	66	v_e
2	e +	18	Λ	51	$ ho^\circ$	67	\overline{v}_e
3	e ⁻	19	Σ^+	52	ρ^+	68	$ u_{\mu}$
		20	Σ°	53	$ ho^-$	69	$rac{ abla_{\mu}}{\overline{ u}_{\mu}}$
5	μ^+	21	Σ^{-}	54	Δ^{++}		
6	μ^-	22	Ξ°	55	Δ^+	71	$\eta \to \gamma \gamma$
7	π°	23	Ξ^-	56	Δ°	72	$\eta \to 3\pi^\circ$
8	π^+	24	Ω^{-}	57	Δ^-	73	$\begin{array}{c} \eta \rightarrow 3\pi^\circ \\ \eta \rightarrow \pi^+\pi^-\pi^\circ \end{array}$
9	π^-	25	n	58	$\overline{\Delta}^{}$	74	$\eta \to \pi^+\pi^-\gamma$
10	K_L°	26	$\overline{\Lambda}$	59	$\overline{\Delta}^-$	75	μ^+ add. info.
11	K ⁺	27		60	$\overline{\Delta}^{\circ}$	76	μ^- add. info.
12	K ⁻	28	$\overline{\Sigma}^{\circ}$	61	$\overline{\Delta}^+$		
13	n	29	$\overline{\Sigma}^+$	62	$\mathbf{K}^{*\circ}$		
14	р	30	Ξ°	63	K^{*+}		
15	$\overline{\mathbf{p}}$	31	$ \overline{\Sigma}^{-} \\ \overline{\Sigma}^{\circ} \\ \overline{\Sigma}^{+} \\ \overline{\Xi}^{\circ} \\ \overline{\Xi}^{+} \\ \overline{\Omega}^{+} \\ \overline{\Omega}^{+} $	64	K^{*-}		
16	$\mathrm{K}^\circ_\mathrm{S}$	32	$\overline{\Omega}^+$	65	$\overline{\mathrm{K}^*}^{\circ}$		

Charmed Particles

Identification	Particle	Identification	Particle	Identification	Particle
116	D°	133	ν_{τ}	153	$\overline{\Sigma_c}^-$
117	D +	134	$\overline{\nu}_{ au}$	154	$rac{\Sigma_c}{\overline{\Sigma_c}^{\circ}} \ rac{\overline{\Xi_c'}^{\circ}}{\overline{\Xi_c'}^{\circ}} \ rac{\overline{\Xi_c'}^{\circ}}{\overline{\Omega_c}^{\circ}}$
118	$\overline{\mathbf{D}}^{-}$			155	Ξ_c'
119	$\overline{\mathbf{D}}^{\circ}$	137	Λ_c^+	156	$\overline{\Xi_c'}^{\circ}$
120	$\overline{\mathbf{D}}^{\circ}$ $\mathbf{D}^+_{\mathbf{s}}$	138	$egin{array}{c} \Lambda_c^+ & \Xi_c^\circ & \Xi_c^\circ & \Sigma_c^{++} & \Sigma_c^+ & \Sigma_c^\circ & \Xi_c^{\prime+} & \Xi_c^{\prime\circ} & \Xi_c^{\circ} & \Xi_c$	157	$\overline{\Omega_c}^\circ$
121	$\overline{\mathbf{D}_{\mathbf{s}}}^{-}$	139	Ξ_c°		
122	η_c	140	Σ_c^{++}	161	$\Sigma_c^{*++} \Sigma_c^{*+} \Sigma_c^{*\circ}$
123	D *°	141	Σ_c^+	162	Σ_c^{*+}
124	\mathbf{D}^{*+}	142	Σ_c°	163	$\Sigma_c^{*\circ}$
125	$\overline{\mathbf{D}^*}^-$	143	$\Xi_c'^+$		
126	$\overline{\mathbf{D}^*}^\circ$	144	$\Xi_c^{\prime\circ}$	171	$\overline{\Sigma_c^*}^{}$
127	$\overline{\mathbf{D}^*}^\circ \ \mathbf{D}^{*+}_{\mathbf{s}}$			172	$\overline{\Sigma_c^*}^-$
128	$\overline{\mathbf{D}^*_{\mathbf{s}}}^-$	149	$\overline{\Lambda_c}^-$	173	$\frac{\overline{\Sigma_c^*}^-}{\overline{\Sigma_c^*}^-}$
130	$\mathbf{J}/\mathbf{\psi}$	150	$\overline{\Xi_c}^-$		_
131	τ^+	151	Ξ_c°		
132	$egin{array}{c} \mathbf{J}/\mathbf{\psi} & \ \mathbf{\tau}^+ & \ \mathbf{\tau}^- & \end{array}$	152	$\frac{\overline{\Lambda_c}^-}{\overline{\Xi_c}^-}\\ \overline{\Xi_c}^\circ\\ \overline{\Sigma_c}^-$		

Monte Carlo Simulations of EAS

Random Numbers

Environment:

- → atmosphere (composition, density ∝e^{+/∞})
- Earth magnetic field (strength, orientation)

Particles:

type, energy, position, direction, time

Range estimation:

- ightarrow cross section σ
- rightarrow life time au

Particle transport:

- ionization energy loss dE/dx
- multiple scattering (for leptons)
- deflection in Earth magnetic field
- particle reaches detector or cut
- Interaction / decay with production of secondaries:
 - high-energy hadronic interaction model
 - Iow-energy hadronic interaction model
 - particle decay (branching ratio > 1 %)
 - electromagnetic interaction (EGS4)
- Secondary particles:
 - store particles on stack

Range of Particle for Interaction

- The probability P_{int} to traverse a layer with thickness χ without interaction is :

$$P_{int}(\chi) = \frac{1}{\lambda_{int}} e^{-\chi/\lambda_{int}}$$

- The individually traversed matter thickness χ is :
 - $\quad \textbf{a} \quad \chi = -ln(RNDM) \cdot \lambda_{int}$
 - with random number 0 < RNDM < 1</p>
- The mean free path λ_{int} is given by $\lambda_{int} = \frac{\sum_{i=1}^{3} \mathbf{n}_{i} \mathbf{A}_{i}}{\sum_{i=1}^{3} \mathbf{n}_{i} \sigma_{int}} \frac{1}{N}$
 - with A_i = atomic weight of component I and N is the avogadro number
 - $\sigma_{i_{irt}}$ = (energy dependent) cross-section of component i
- \rightarrow The atomic fractions n_{i} (volume) of air are adopted to
 - N₂ 0.7848 (78.084%)
 - O 0.2105 (20.948%)
 - Ar 0.0047 (0.934%)

CORSIKA School Dec 2010

Range of Particle for Decay

- The probability P_D to traverse a pathl=-l without decay is $P_D(\ell) = \frac{1}{\ell_D} e^{-\ell/\ell_D}$
- The individually traversed path length^{l=-]} is
 - $\ell = -\ln(\mathbf{RNDM}) \cdot \ell_{\mathbf{D}}$
 - with random number 0 < RNDM < 1</p>
- The mean free path $\ell_{D} = is$ given by $\ell_{D} = \mathbf{c} \cdot \boldsymbol{\tau} \cdot \boldsymbol{\gamma} \cdot \boldsymbol{\beta}$
 - c = vacuum speed of light,
 - $= \tau$ = particle life time at rest,
 - γ = particle Lorentz factor and
 - β = particle velocity in units of c

Monte Carlo Simulations of EAS

Random Numbers

Environment:

- → atmosphere (composition, density ∝e^{+/∞})
- Earth magnetic field (strength, orientation)
- Particles:
 - type, energy, position, direction, time
- Range estimation:
 - 🔹 cross section σ
 - \Rightarrow life time τ

Particle transport:

- ionization energy loss dE/dx
- multiple scattering (for leptons)
- deflection in Earth magnetic field
- particle reaches detector or cut
- Interaction / decay with production of secondaries:
 - high-energy hadronic interaction model
 - Iow-energy hadronic interaction model
 - particle decay (branching ratio > 1 %)
 - electromagnetic interaction (EGS4)
- Secondary particles:
 - store particles on stack

Introduction

Hadronic Interaction Models

Why so many hadronic interaction models ?

- Different interaction models produce different mean values.
 - Scattering of mean values gives estimation on systematic uncertainty introduced by different extrapolations of accelerator data to high energy and forward direction.
- High energy model
 - main development (Xmax, muons)
- Low energy model
 - particles far from the core (e/m and muons)
- See various lectures during school for details

Particle Stacks

register / stack name	number of particles	content	comment
PRMPAR	1	primary particle	common PARPAR
CURPAR	1	current particle	common PARPAR
PROPAR	1	propagated particle	AAMAIN, BOX3, MUTRAC
OUTPAR	1	output / propagated particle	common PARPAR
AMUPAR	1	additional muon info	common MUPART
SECPAR	1	secondary particle	common PARPAR
STACKINT	200 000	intermediate stack for thinning	common STACKINT
STACKI	680 (624) (512)	intermediate stack for ext. file	common STACKF
(MEXST)	∞	particle stack	(scratch file)
DATAB	39	output buffer	common BUFFS
(STACKE)	60	em-particle stack	common STACKE

Particle Register

	stack position	equivalence	meaning
	CURPAR(0)	(ITYPE)	particle identifier
	CURPAR(1)	GAMMA	γ Lorentz factor
	CURPAR(2)	COSTHE	$\cos(\theta)$ vertical direction cosine ¹
	CURPAR(3)	PHIX	$sin(\theta) \cdot cos(\phi)$ horizontal direction cosine ¹
	CURPAR(4)	PHIY	$sin(\theta) \cdot sin(\phi)$ horizontal direction cosine ¹
	CURPAR(5)	Н	height [cm]
	CURPAR(6)	Т	time [sec] (since first interation)
	CURPAR(7)	Х	horizontal position [cm]
	CURPAR(8)	Y	horizontal position [cm]
1166	CURPAR(9)	CHI	χ depth to next interaction [g·cm ⁻²]
different definitions in	CURPAR(10)	BETA	$\beta = v/c$ fraction of speed of light
SECPAR	CURPAR(11)	GCM	γ Lorentz factor in cms-system
	CURPAR(12)	ECM	energy in cms-system [GeV]
if THIN	CURPAR(13)	WEIGHT	weight for thinning (THIN option)
if CURVED	CURPAR(14)	HAPP	apparent height [cm] (CURVED option)
	CURPAR(15)	COSTAP	$cos(\theta^*)$ apparent zenith angle cosine (CURVED option)
	CURPAR(16)	COSTEA	$cos(\theta_E)$ angle at Earth center cosine (CURVED option)
if INTTEST	CURPAR(17)		transverse momentum [GeV/c] (INTTEST option)
	1.0		

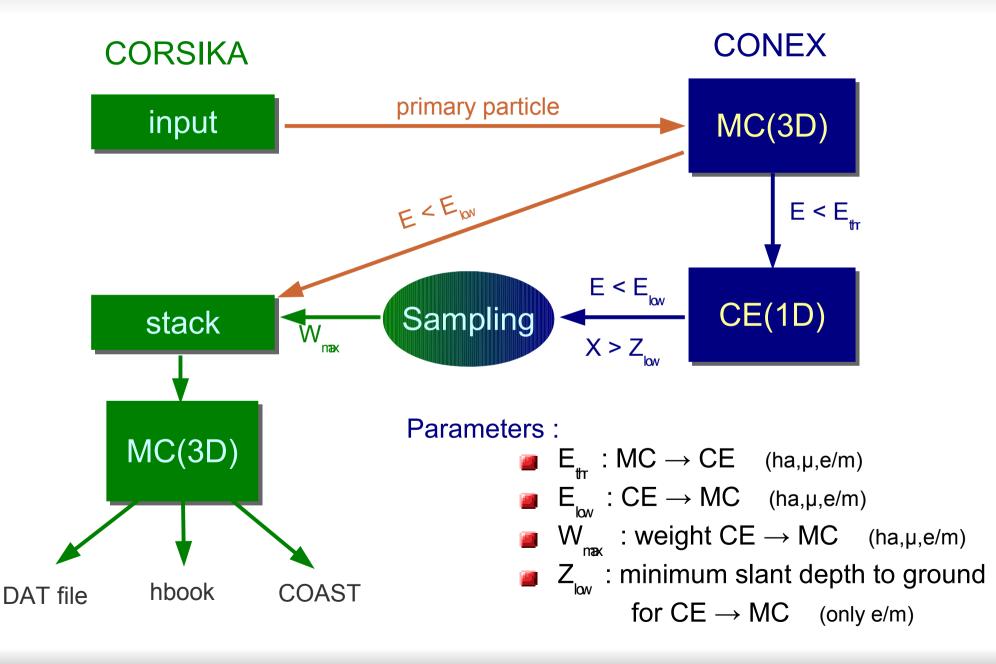
¹ θ = zenith angle, ϕ = azimuth angle

Technicalities

New Developments

New Developments

CONEX in CORSIKA

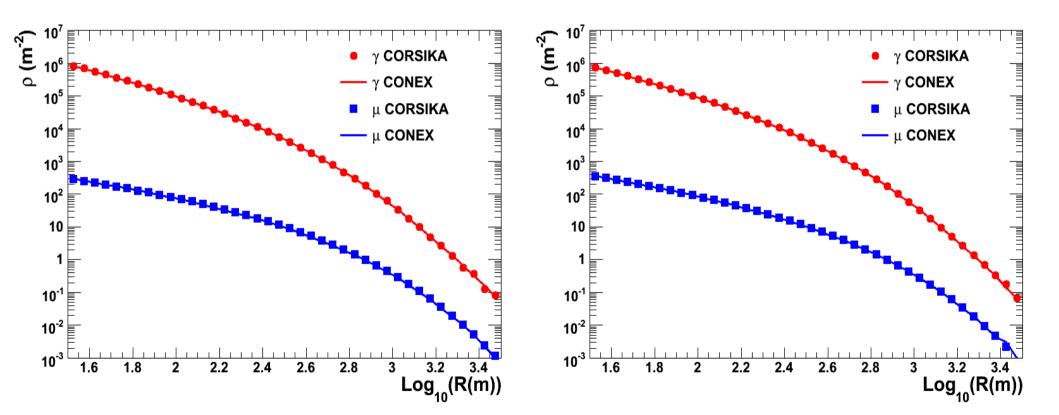

Idea : use CONEX as an option in CORSIKA

- CORSIKA running script and installation
- CORSIKA input
 - one more line in steering file for CONEX parameters
- CORSIKA output
 - no new interface
- CORSIKA low energy hadronic interactions models
 - while only GHEISHA in CONEX
- CONEX high energy hadronic interaction models

EPOS, QGSJET01, QGSJETII, SIBYLL 2.1, NEXUS 3.97

CONEX used as a new type of thinning in CORSIKA : transparent for users !

CORSIKA with **CONEX**



Test : lateral distribution functions

Simulations proton 10¹⁹ eV :

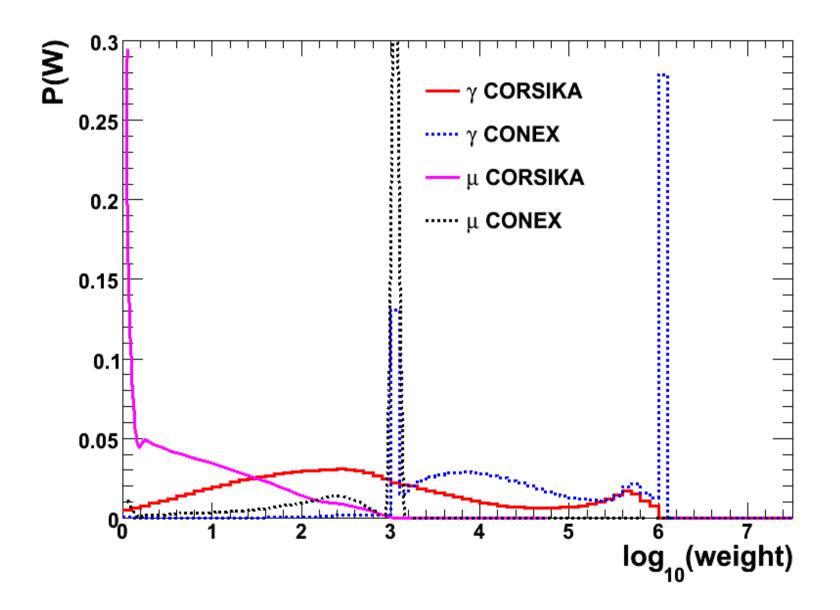
EPOS 1.6 + FLUKA : fixed first interaction

QGSJET01 + FLUKA : random first interaction

Cascade Equations vs Thinning

Both save computation time by reducing the number of particles : a weight is introduced

- thinning : randomly selected particle carry the weight of all particles produced at the same time to conserve energy
 - Iarge spread of weight = large artificial fluctuations !

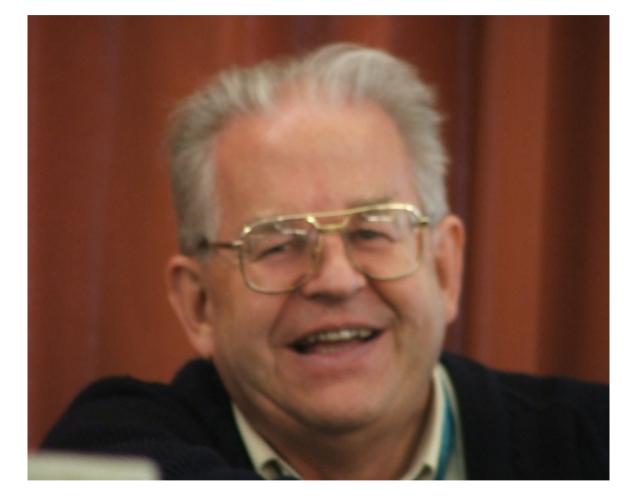

- cascade equations : same weight for all particles sampled from the cascade equations :
 - unique weight = no artificial fluctuations !
 - less fluctuations = larger weight can be used
 - larger weight = less particles
 - less particles = less time

More time saved with cascade equations and less fluctuations

Fechnicalities

New Developments

Weight Distributions



To come : CORSIKA 7.xxx (2011)

- CONEX as an option in CORSIKA
 - fast 1D simulations
 - faster 3D simulations
 - easy selection of shower for event-by-event analysis

- ...

- COAST distributed with CORSIKA
 - new extended ROOT output
 - inclined observation planes
 - user defined histogramming
- PARALLEL option
 - easy management of sub-showers with proper random number seed

Thank you !