Building the Layer 4 of Belle II SVD

Kamesh and Team

DHEP Annual Meeting May 8-9, 2018

Milestones of L4 ladder production

3D model and main parts of an L4 ladder

Backward sensor (Rectangular DSSD)

Forward sensor (Trapezoidal DSSD) Slant angle of 11.9°

Central origami sensor (Rectangular DSSD)

Design and production of assembly jigs

Design software: Autodesk Inventor Professional 2012

Number of jigs designed: ~50

Assembly base

Assembly bench

Slant jig (11.9°)

Tolerances Achieved:

Length of rods tolerance : +/- 40 μm Diameter of rods : +/-20 μm Flatness of small jigs : less than 70 μm Flatness of large jigs: less than 150 μm

Design, production and fine-tuning of the jigs and their CMM were all performed in-house Purpose of jigs:

- Precise placing of the components (sensor always on polyacetal part)
- Starting from step# 1 they are used for each and every operation (never touch the components with hand)
- Picking up and placing components
- Alignment of the components
- Holding the hybrid boards
- Transfer of components with the help of vacuum

Instruments for ladder assembly at IPMU

Wire: Al+Si (1%) 25 µm diameter

Pull tester

Microscope (TIFR)

Gluing robot

C.

Key steps in ladder assembly

Half ladder

Ladder in the container

APV guard fixing

Class C review

All jigs and assembled ladder were critically monitored and verified by the experts from Austria, Italy, Australia and Japan

Gluing and wire-bonding

Gluing

Monitor glue spread at each stepElse, we risk WB performance

Wire-bonding

Key challenges:

- Proper selection of pads while programing the bonder
- Removal of tiny wire-bond pieces from the pads (left over due to unbonding during auto-operation)
- Rebonding due to the limited bondable space on pad, particularly for APV chip bond pads
- Adjustment of shorted wire-bonds (pitch: 88 μm)
- Continuous monitoring with microscope

Bond pull strength ~10 gf (destructive test on samples)
Total wirebonds per ladder ~ 8000

Pitch adapter to sensor

Pitch adapter to APV chips (three rows)

PA wrapping setup

Origami module

fig 2

Key challenges:

- Perform the operation very slowly under microscope
- Not too much pressing from the top, but ensure to have proper gluing between the parts, else bonding issues fig 1
- Take care of bias bonds on the N side of sensor fig 2
- Take care of delicate bonds as shown in fig 3

CMM and EQA results of assembled ladders

Mechanical Quality:

 Deviations from the design value along three axes are within the specification: ±150 μm in x, y and ±250 μm along the z-axis

Electrical Quality Assurance:

P-side

number of defects = 2 / 768 (0.26%) # p_Noisy = 0 (0.00%) # p_Open = 0 (0.00%) # p_Short = 0 (0.00%) # p_Pinhole = 2 (0.26%) # p_Particle_Resp = 0 (0.00%)

N-side

number of defects = 2 / 512 (0.39%) # n_Noisy = 1 (0.20%) # n_Open = 1 (0.20%) # n_Short = 0 (0.00%) # n_Pinhole = 0 (0.00%) # n_Particle_Resp = 0 (0.00%)

On average, 1-2 electrical defects introduced during assembly

11

Challenges faced during production

1st challenge: In the 1st ladder, found open in the origami PCB due to which the sensor was drawing no current \implies fixed the open

2nd challenge: Sensor breakdown early due to a suspicious pinhole
removed the wire-bond of the bonded pinhole strip

3rd challenge: PA partially peeled off from the FW sensor (this time only happened to L4)

4th Challenge: PA fully peeled off from the FW sensor both for L4 and L6 on the half as well as full ladders

Initial solution: Type 2 glue reinforcement (left)

Challenge contd.: Peel-off reappeared in L4 ladder Final solution: Type 3 glue reinforcement (right)

Reason: L4 has more constraint between the FW sensor and PA compared to L5 and L6

5th challenge: One of the assembled origamis has more noise channels so we needed to keep it aside

Additional jigs to mitigate challenges

- Designed and produced an Origami pickup jig to pickup the OS4 from the assembly bench to make a way for aligning FW and BW sensors on the assembly bench and gluing onto the ribs

Holding the OS4 jig with holders as shown in the figure

Flip Jig

Summary

3pm tea time discussion at IPMU

L4 and L6 teams at IPMU

- Visual inspection and photos at IPMU
- Transport ladders to KEK
- Incoming inspection and EQA at KEK
- Keratharm attachment
- Visual Inspection (photos)
- Ladder mount one per day due to complex and laborious inspection procedures

Mockup Assembly @ KEK

Production completed - April 18, 2018

Thank You

Backup slides

SFW study before gluing

Effect on sensor while adjusting the Hybrid board in x direction

Effect on sensor while adjusting the Hybrid board in x direction

Effect on sensor while adjusting the Hybrid board in x direction

Solution for Peel-off issue from next Ladder

Type 2 glue reinforcement

Peel-off reappeared on L4.010

Type 3 Glue reinforcement

After Type 3 Glue reinforcement – No more Peel-offs

