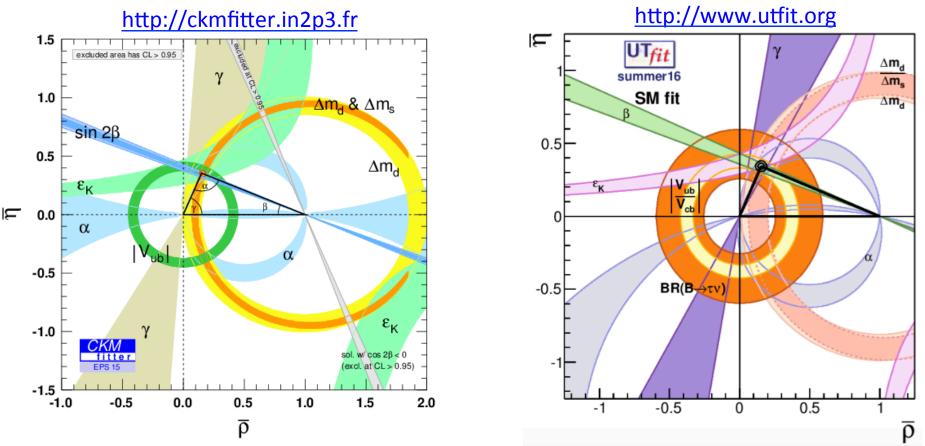
B physics at hadron machines

Vincenzo Vagnoni CERN and INFN Bologna

on behalf of the LHCb collaboration with results from



9th International Workshop on the CKM Unitarity Triangle TIFR, Mumbai

Outline

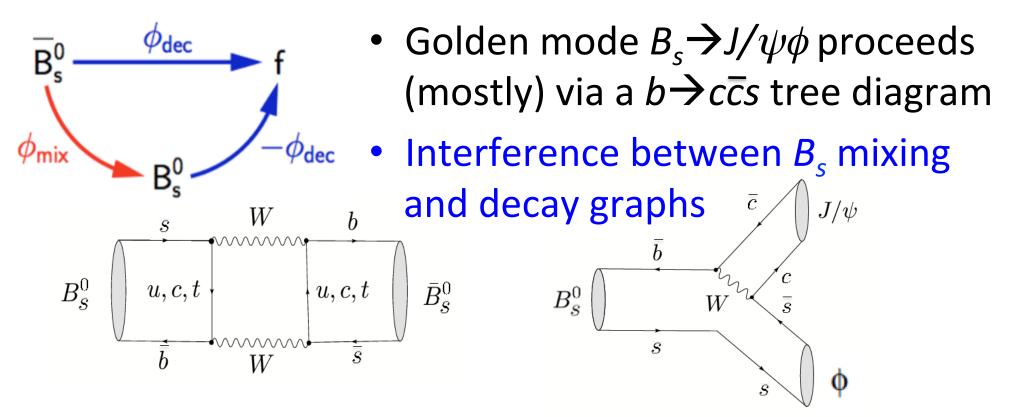
- *CP* violation in the interference between *B*-meson mixing and decay
- CP violation in B-meson mixing
- B-meson width and mass differences
- Photon polarisation in $B_s \rightarrow \phi \gamma$
- Tree-level determination of γ
- Searches for CP violation in b baryons
- Measurement of $|V_{ub} / V_{cb}|$
- Leptonic and charmless hadronic rare decays
- Angular analysis of $B^0 \rightarrow K^* \mu^+ \mu^-$ decays
- Lepton Flavour Universality tests

An astonishing success

- Don't forget: relevant inputs from Lattice QCD and great work from the Heavy Flavour Averaging Group
 - <u>http://www.slac.stanford.edu/xorg/hfag</u>
- Great success of the Standard Model CKM picture!
 - All of the measurements agree in a highly profound way
 - In the presence of relevant New Physics effects, the various contours would not cross each other in a single point

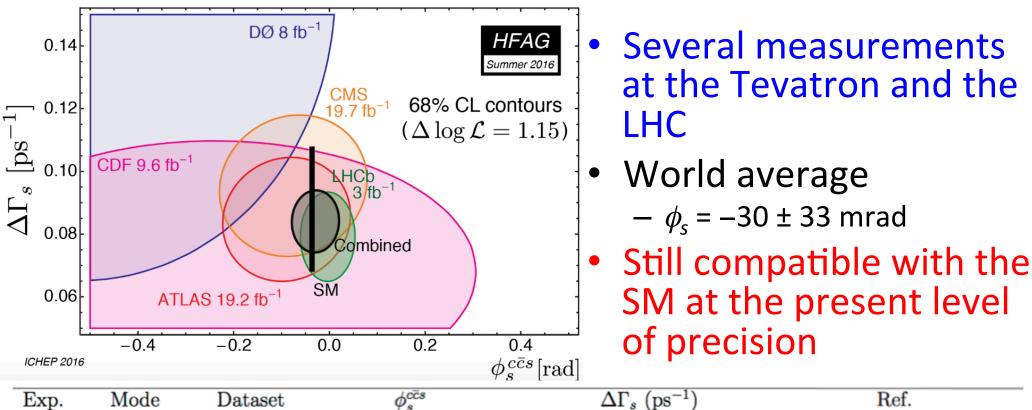
Nevertheless...

- Although the Standard Model works beautifully up to a few hundred GeV, it must be an effective theory valid up to some scale
- The good reasons to believe that it is incomplete are still there, e.g.
 - Missing dark matter candidate
 - CP violation for dynamical generation of BAU largely insufficient
- We must search for
 - New particles, interactions, symmetries (and their breaking)
 - New sources of CP violation


Cross-section vs luminosity

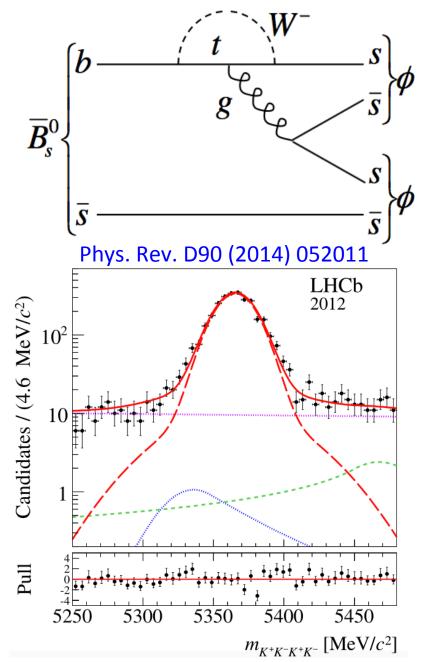
- Several experiments at different machines contributed/contributing to the field in the last 15 years
- Lower luminosity but larger cross section at hadron machines allow for unprecedented samples to be collected

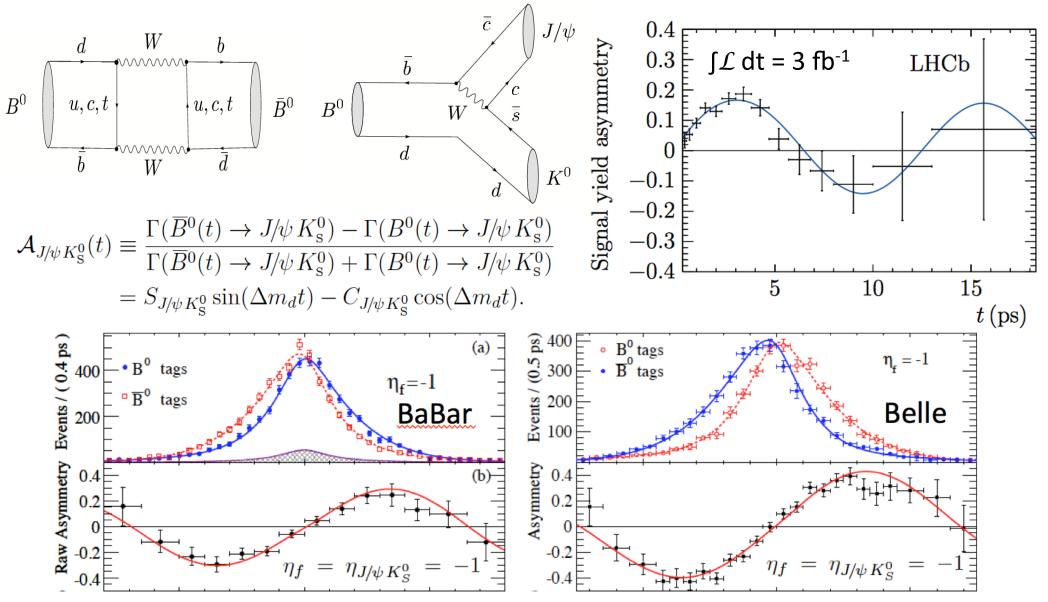
Experiment	∫ ℒ dt [fb⁻¹]	$\sigma_{\sf beauty}$ [μb]	End of life
BaBar + Belle	1600 (total)	0.001 [e ⁺ e ⁻ at Y(4S)]	2008/2010
CDF + D0	24 (total)	100 [pp̄ at 2 TeV]	2011
ATLAS + CMS	150 (so far)	250-500 [pp at 7-13 TeV]	> 2030
LHCb*	5 (so far)	250-500 [pp at 7-13 TeV]	> 2030


 Forward detector optimised for heavy flavour physics with levelled luminosity to limit pileup effects

One milestone of modern beauty physics

- Measures the phase-difference ϕ_s between the two diagrams, precisely predicted in the SM to be ϕ_s =-37.4 ± 0.7 mrad \rightarrow can be altered by New Physics
 - But also affected by small pollution of sub-leading SM amplitudes that must be taken under control


ϕ_s from $b \rightarrow c\bar{c}s$ transitions

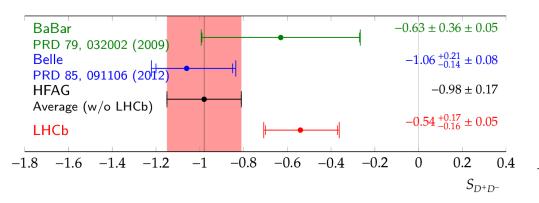

Exp.	Mode	Dataset	ϕ_s^{ccs}	$\Delta \Gamma_s \ (\mathrm{ps}^{-1})$	Ref.
CDF	$J\!/\!\psi\phi$	$9.6{\rm fb}^{-1}$	[-0.60, +0.12], 68% CL	$+0.068\pm0.026\pm0.009$	Phys. Rev. Lett. 109, 171802 (2012)
D0	$J/\psi\phi$	$8.0{ m fb}^{-1}$	$-0.55^{+0.38}_{-0.36}$	$+0.163^{+0.065}_{-0.064}$	Phys. Rev. D85 , 032006 (2012)
ATLAS	$J\!/\!\psi\phi$	$4.9\mathrm{fb}^{-1}$	$+0.12\pm 0.25\pm 0.05$	$+0.053\pm0.021\pm0.010$	Phys. Rev. D90 , 052007 (2014)
ATLAS	$J\!/\!\psi\phi$	$14.3\mathrm{fb}^{-1}$	$-0.123 \pm 0.089 \pm 0.041$	$+0.096\pm 0.013\pm 0.007$	JHEP 08 , 147 (2016)
ATLAS	above 2 o	combined	$-0.098 \pm 0.084 \pm 0.040$	$+0.083\pm0.011\pm0.007$	JHEP 08 , 147 (2016)
CMS	$J\!/\!\psi\phi$	$19.7{ m fb}^{-1}$	$-0.075\pm0.097\pm0.031$	$+0.095\pm0.013\pm0.007$	Phys. Lett. B757 , 97–120 (2016)
LHCb	$J/\psi K^+K^-$	$3.0{ m fb}^{-1}$	$-0.058 \pm 0.049 \pm 0.006$	$+0.0805\pm0.0091\pm0.0033$	Phys. Rev. Lett. 114 , 041801 (2015)
LHCb	$J\!/\!\psi\pi^+\pi^-$	$3.0\mathrm{fb}^{-1}$	$+0.070\pm0.068\pm0.008$	_	Phys. Lett. B736 , 186 (2014)
LHCb	above 2 d	combined	$-0.010 \pm 0.039(tot)$	_	Phys. Rev. Lett. 114 , 041801 (2015)
LHCb	$D_s^+ D_s^-$	$3.0{ m fb}^{-1}$	$+0.02\pm 0.17\pm 0.02$	_	Phys. Rev. Lett. 113 , 211801 (2014)
LHCb	$\psi(2S)\phi$	$3.0\mathrm{fb}^{-1}$	$+0.23^{+0.29}_{-0.28}\pm0.02$	$+0.066^{+0.41}_{-0.44}\pm0.007$	arXiv:1608.04855 7

CP violation in $B_s \rightarrow \phi \phi$

- Gluonic $b \rightarrow s\bar{s}s$ penguin
- LHCb result with full Run 1 data set
 - ~4000 signal candidates
 - $\phi_{s}^{\phi\phi} = -170 \pm 150 \pm 30 \text{ mrad}$
- No sign of discrepancy yet, but overall precision comparable to golden b→cc̄s modes
- Great prospects for LHCb Run-3 with higher instantaneous luminosity and improved trigger

But never forget your first love

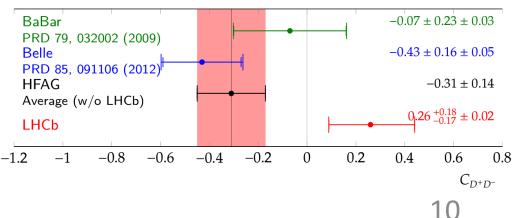
- BaBar: 0.657 ± 0.036 ± 0.012
- Belle: 0.670 ± 0.029 ± 0.013
- LHCb: 0.731 ± 0.035 ± 0.020


Phys. Rev. D79 (2009) 072009

- Phys. Rev. Lett. 108 (2012) 171802
- Phys. Rev. Lett. 115 (2015) 031601

CP violation from $B^0 \rightarrow D^+ D^-$

- LHCb recently measured time-dependent *CP* violation in the B⁰→D⁺D⁻ decay
 - Complementary information on sin2 β through $b \rightarrow c\bar{c}d$ transitions
 - Comparison with $B^0 \rightarrow J/\psi K_s$ constrains penguin contributions to $B \rightarrow DD$
 - Tagging power: $(8.1 \pm 0.6)\%$
- Consistent with SM and no penguin pollution

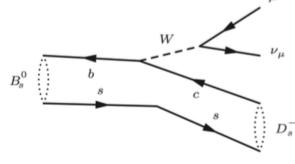

– i.e. *S* ≈ –0.75 (–sin2 β) and *C*=0

$$egin{aligned} \mathcal{A}_{ ext{DD}}(t) &= rac{\Gamma(\overline{ ext{B}}^0(t) o ext{D}^+ ext{D}^-) - \Gamma(ext{B}^0(t) o ext{D}^+ ext{D}^-)}{\Gamma(\overline{ ext{B}}^0(t) o ext{D}^+ ext{D}^-) + \Gamma(ext{B}^0(t) o ext{D}^+ ext{D}^-)} \ &= S_{CP} \sin(\Delta m_{ ext{d}} t) - C_{CP} \cos(\Delta m_{ ext{d}} t) \end{aligned}$$

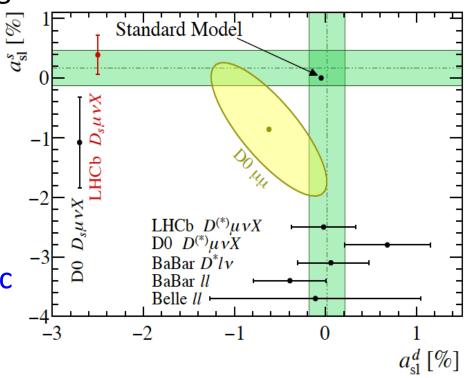
$$S_{CP} = -0.54 \pm_{0.16}^{0.17} (ext{stat}) \pm 0.05 (ext{sys})$$

 $C_{CP} = 0.26 \pm_{0.17}^{0.18} (ext{stat}) \pm 0.02 (ext{sys})$

LHCb-PAPER-2016-037 arXiv:1608.06620



CP violation in B_s - \overline{B}_s mixing

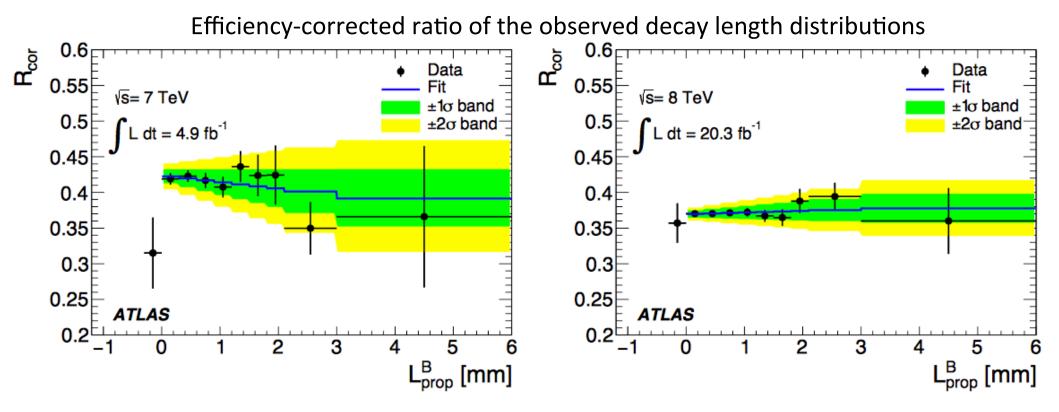

 CP violation in neutral B-meson mixing manifests itself if

$$\mathcal{P}(B_q \to \bar{B}_q) \neq \mathcal{P}(\bar{B}_q \to B_q)$$

- Interest triggered by a measurement from D0 yielding an anomalous likesign dimuon asymmetry
 - Phys. Rev. D89 (2014) 012002
- Precise measurements of semileptonic asymmetries from LHCb
- Run-1 measurement of $a_{sl}(B_s)$ using $B_s \rightarrow D_s(KK\pi)\mu\nu X$ decays from LHCb

$$\frac{N(D_s^-\mu^+) - N(D_s^+\mu^-)}{N(D_s^-\mu^+) + N(D_s^+\mu^-)}$$

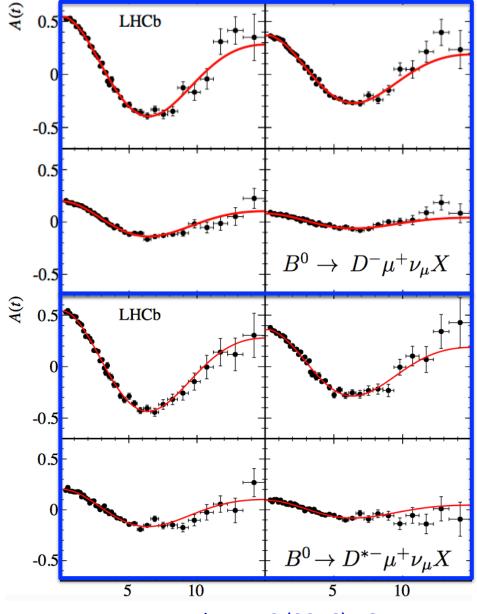
Note: $a_{sl}(B_d)$ and $a_{sl}(B_s)$ are very small in the SM $a_{sl}^s = (2.22 \pm 0.27) \times 10^{-5}$ for B_s^0 $a_{sl}^d = (-4.7 \pm 0.6) \times 10^{-4}$ for B^0 Artuso, Borissov, Lenz [arXiv:1511.09466]


Phys. Rev. Lett. 117 (2016) 061803

 $a_{\rm sl}^s = (0.39 \pm 0.26 ({\rm stat}) \pm 0.20 ({\rm syst}))\%$

Measurement of the B⁰ width difference

- Recent measurement of $\Delta \Gamma_d / \Gamma_d$ by ATLAS
 - Comparing decay-time distributions of $B^0 \rightarrow J/\psi K_s$ and $B^0 \rightarrow J/\psi K^{*0}$

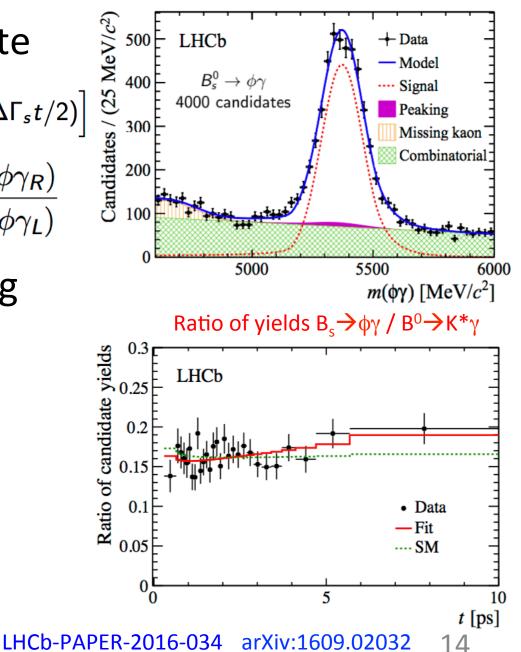

 $\Delta \Gamma_d / \Gamma_d = (-0.1 \pm 1.1 \text{ (stat.)} \pm 0.9 \text{ (syst.)}) \times 10^{-2}$ JHEP 06 (2016) 081

Most precise measurement from a single experiment to date

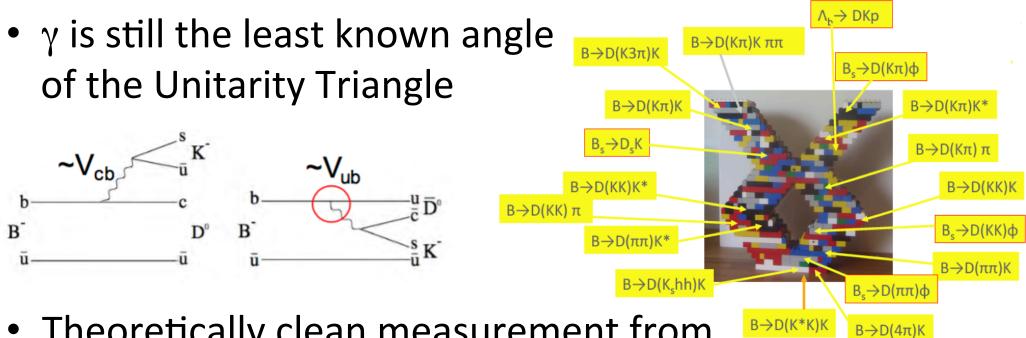
Measurement of the B⁰ mass difference

- Mixing frequency ∆m_d measured with full Run-1 sample
 - 1.6M $B^0 \rightarrow D^- \mu^+ vX$ decays - 0.8M $B^0 \rightarrow D^{*-} \mu^+ vX$ decays
- Using four tagging categories of different mistag rate $\Delta m_d = (505.0 \pm 2.1 \pm 1.0) \, \mathrm{ns}^{-1}$
- World's best single measurement, more precise than previous world average

Eur. Phys. J. C (2016) 76


Photon polarisation in $B_s \rightarrow \phi \gamma$

• Fit untagged decay-time rate

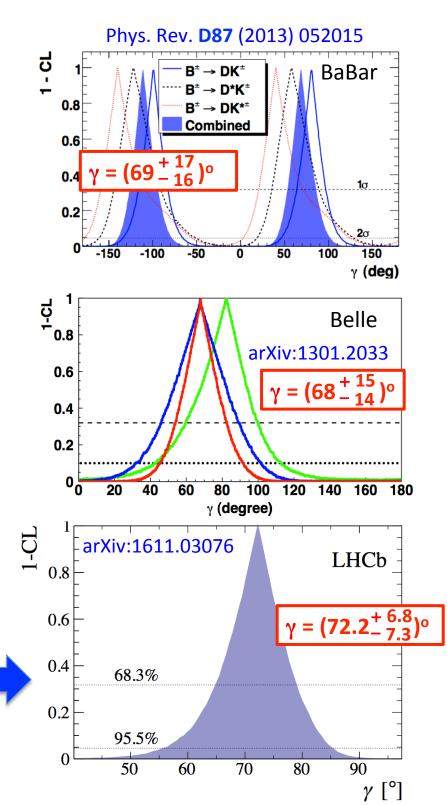

$$\Gamma_{B^0_s o \phi \gamma}(t) \propto e^{-\Gamma_s t} \left[\cosh\left(\Delta \Gamma_s t/2
ight) - \mathcal{A}^\Delta \sinh\left(\Delta \Gamma_s t/2
ight)
ight]$$

 $\mathcal{A}^{\Delta} \approx \sin 2\psi \cos \varphi_{s} \quad \tan \psi \equiv \frac{\mathcal{A}(B_{s}^{0} \to \phi \gamma_{R})}{\mathcal{A}(\overline{B}_{s}^{0} \to \phi \gamma_{L})}$

- Control acceptance by using $B^0 \rightarrow K^{*0} \gamma$ decays
- First result on photon polarisation! $\mathcal{A}^{\Delta} = -0.98 \substack{+0.46 + 0.23 \\ -0.52 - 0.20}$
- To be compared with $\mathcal{A}^{\Delta}{}_{\rm SM} = 0.047 \, {}^{+\, 0.029}_{-\, 0.025}$

Tree-level determination of γ

- Theoretically clean measurement from B→D(K*K)K B→D(4π)K
 tree-level transitions → genuine experimental effort!
- Two main routes
 - Time-independent measurements, e.g. using $B \rightarrow DK$ decays
 - Time-dependent analyses with B_s decays, e.g. $B_s \rightarrow D_s K$
- Combining a plethora of independent decay modes is the key to achieve the ultimate precision 15

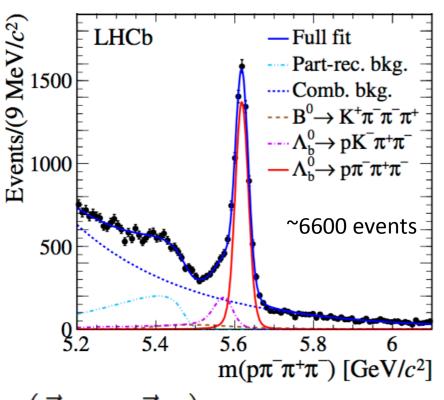

Experimental status for γ

 New combination of all available measurements from LHCb

LHCb measurements used in the combination

B decay	D decay	Method	
$B^+ \to D h^+$	$D ightarrow h^+ h^-$	GLW/ADS	
$B^+ \to D h^+$	$D \to h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	
$B^+ \to D h^+$	$D ightarrow h^+ h^- \pi^0$	GLW/ADS	
$B^+ \to DK^+$	$D ightarrow K_{ m s}^0 h^+ h^-$	GGSZ	
$B^+ \to DK^+$	$D ightarrow K_{ m s}^0 K^+ \pi^-$	GLS	
$B^+ \to D h^+ \pi^- \pi^+$	$D ightarrow h^+ h^-$	GLW/ADS	
$B^0 ightarrow DK^{*0}$	$D \to K^+ \pi^-$	ADS	
$B^0\!\to DK^+\pi^-$	$D ightarrow h^+ h^-$	$\operatorname{GLW-Dalitz}$	
$B^0 \to DK^{*0}$	$D ightarrow K_{ m \scriptscriptstyle S}^0 \pi^+ \pi^-$	GGSZ	
$B^0_s \to D^\mp_s K^\pm$	$D_s^+\! ightarrow h^+h^-\pi^+$	TD	

 Significantly more precise than previous results

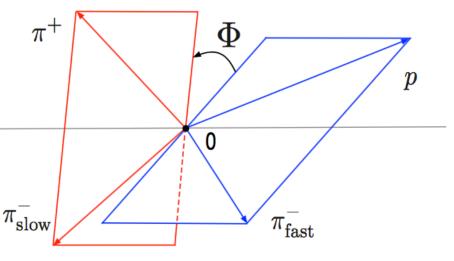


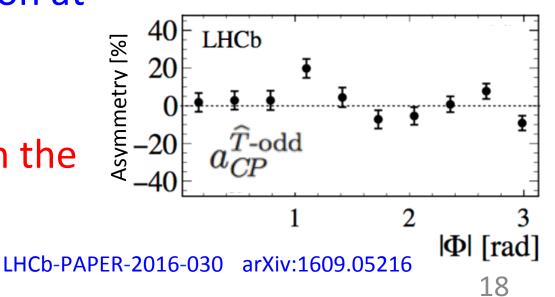
New avenues: search for *CP* violation in $\Lambda_b \rightarrow p \pi^- \pi^+ \pi^-$ decays from LHCb

- CP violation has never been observed in the decays of any baryonic particle
- $\Lambda_b \rightarrow p\pi^-\pi^+\pi^-$ decays used to search for *CP*-violating asymmetries in triple products of final-state particle momenta

$$C_{\widehat{T}} = \vec{p_p} \cdot (\vec{p_{h_1^-}} \times \vec{p_{h_2^+}}) \quad \overline{C}_{\widehat{T}} = \vec{p_p} \cdot (\vec{p_{h_1^+}} \times \vec{p_h})$$

$$\overline{A}_{\widehat{T}}(\overline{C}_{\widehat{T}}) = \frac{\overline{N}(-\overline{C}_{\widehat{T}} > 0) - \overline{N}(-\overline{C}_{\widehat{T}} < 0)}{\overline{N}(-\overline{C}_{\widehat{T}} > 0) + \overline{N}(-\overline{C}_{\widehat{T}} < 0)}$$
$$A_{\widehat{T}}(C_{\widehat{T}}) = \frac{N(C_{\widehat{T}} > 0) - N(C_{\widehat{T}} < 0)}{N(C_{\widehat{T}} > 0) + N(C_{\widehat{T}} < 0)}$$




LHCb-PAPER-2016-030 arXiv:1609.05216

$$\begin{array}{l} & \mathcal{CP}\text{-violating observable} \\ a_{C\!P}^{\widehat{T}\text{-odd}} = \frac{1}{2}\left(A_{\widehat{T}} - \overline{A}_{\widehat{T}}\right) \end{array}$$

New avenues: search for *CP* violation in $\Lambda_b \rightarrow p \pi^- \pi^+ \pi^-$ decays from LHCb

- Local *CP*-violating effects studied as a function of the the relative orientation between the decay planes formed by the *pπ⁻* and the *π⁺π⁻* systems (Φ)
- An evidence for CP violation at the 3.3σ level is found
- This represents the first evidence of *CP* violation in the baryon sector

$|V_{ub}/V_{cb}|$ from $\Lambda_b \rightarrow p \mu \nu$ decays at LHCb

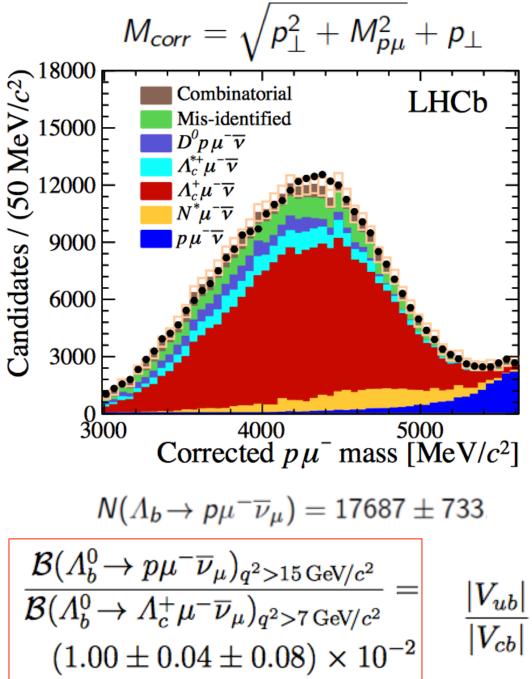
• Measure $\mathfrak{B}(\Lambda_b \rightarrow p\mu\nu)$ relative to $\mathfrak{B}(\Lambda_b \rightarrow \Lambda_c \mu\nu)$ in the high q^2 region where the theory uncertainty is smaller Nature Physics 10 (2015) 1038

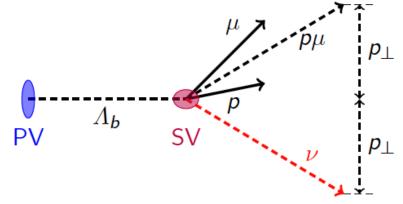
$$\frac{\mathcal{B}(\Lambda_b \to p\mu^- \overline{\nu}_\mu)_{q^2 > 15 \,\mathrm{GeV}^2/c^4}}{\mathcal{B}(\Lambda_b \to \Lambda_c \mu \nu)_{q^2 > 7 \,\mathrm{GeV}^2/c^4}}$$

$$\Lambda_b^0 \xrightarrow{u} V_{ub} \xrightarrow{d} \pi^+ p$$

$$b \xrightarrow{u} U \xrightarrow{u} l^-$$

$$\overline{\nu}_l$$

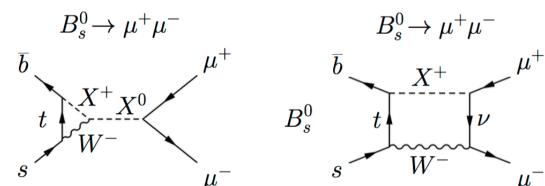

$$\frac{N(\Lambda_b \to p\mu^- \overline{\nu}_{\mu})}{N(\Lambda_b \to (\Lambda_c \to pK\pi)\mu^- \overline{\nu}_{\mu})} \times \frac{\epsilon(\Lambda_b \to (\Lambda_c \to pK\pi)\mu^- \overline{\nu}_{\mu})}{\epsilon(\Lambda_b \to p\mu^- \overline{\nu}_{\mu})} \times \mathcal{B}(\Lambda_c \to pK\pi)$$

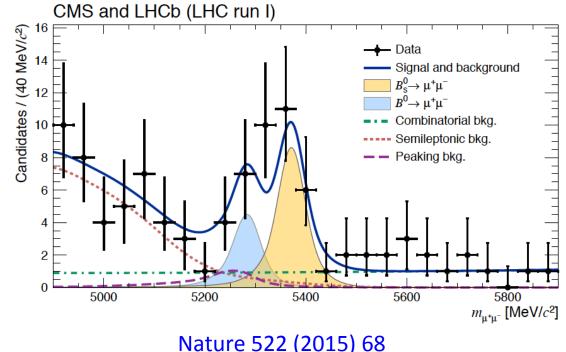

- Use Belle measurement of $\mathfrak{B}(\Lambda_c \rightarrow pK\pi)$
 - Phys. Rev. Lett. 113 (2014) 042002

 $R_{exp} = R_{theory} (|\mathrm{V_{ub}}|^2 / |\mathrm{V_{cb}}|^2)$

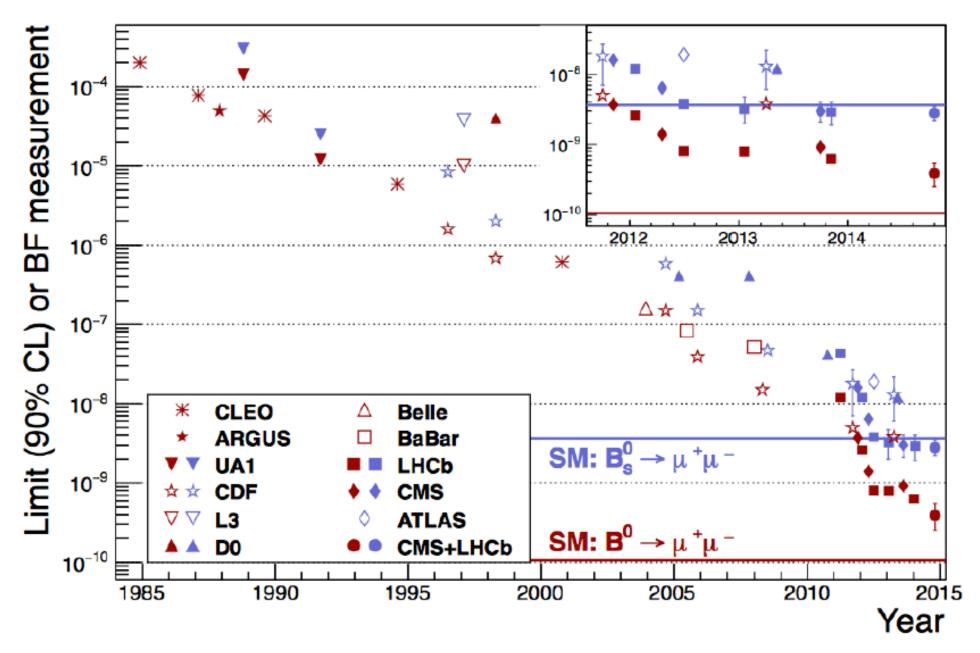
 $R_{theory} = 1.471 \pm 0.095 \pm 0.109$ Phys. Rev. D92 (2015) 034503

$|V_{ub}/V_{cb}|$ from $\Lambda_b \rightarrow p \mu v$ decays at LHCb

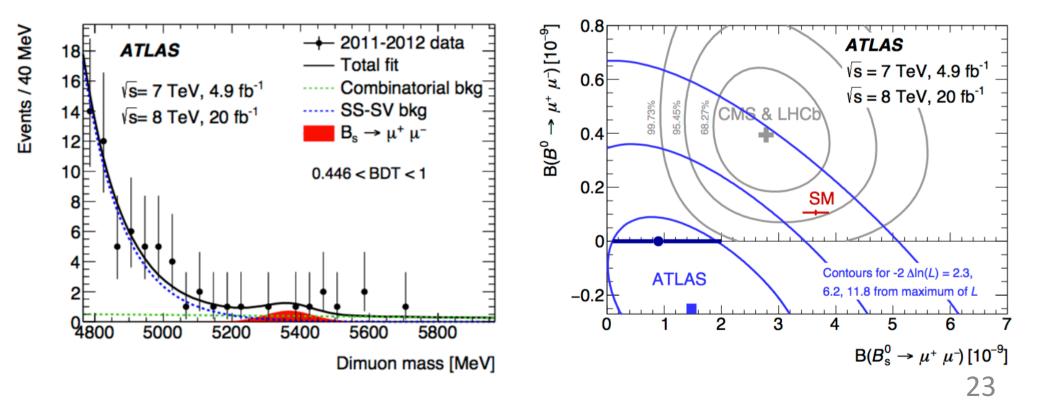



Source	Relative uncertainty (%)
$\mathcal{B}(\Lambda_c^+ \to pK^+\pi^-)$	$^{+4.7}_{-5.3}$
Trigger	3.2
Tracking	3.0
Λ_c^+ selection effici	iency 3.0
$\Lambda_b^0 \to N^* \mu^- \overline{\nu}_\mu$ sh	apes 2.3
Λ_b^0 lifetime	1.5
Isolation	1.4
Form factor	1.0
Λ_b^0 kinematics	0.5
q^2 migration	0.4
PID	0.2
Total	+7.8 - 8.2

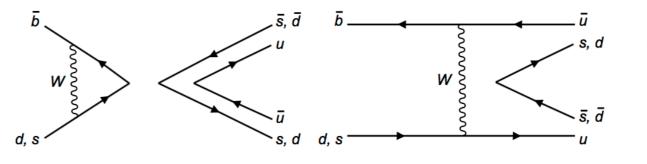
 $\frac{|V_{ub}|}{|V_{cb}|} = 0.083 \pm 0.004 (\text{expt}) \pm 0.004 (\text{lattice})$ Nature Physics 10 (2015) 1038 20


Rare decays as another avenue to New Physics $B_{d,s} \rightarrow \mu^+ \mu^-$ from CMS and LHCb

- CMS and LHCb have performed a combined fit to their full Run 1 data sets $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) = 2.8^{+0.7}_{-0.6} \times 10^{-9} B_s^0$ $\mathcal{B}(B^0 \rightarrow \mu^+\mu^-) = 3.9^{+1.6}_{-1.4} \times 10^{-10}$
- $B_s \rightarrow \mu\mu$ 6.2 σ significance was first observation
 - Compatibility with the SM at 1.2σ
- Excess of events at the 3σ level observed for the B⁰→µµ hypothesis with respect to background-only – Compatible with SM at 2.2σ

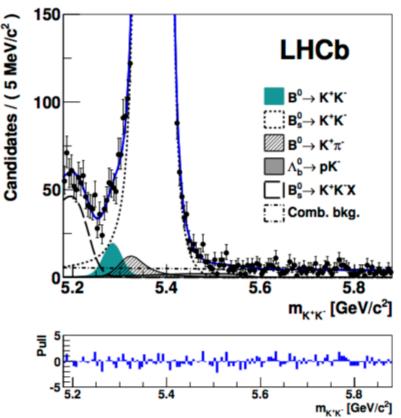


 $B_{d,s} \rightarrow \mu^+ \mu^-$ history



$B_{d,s} \rightarrow \mu^+ \mu^-$ searches at ATLAS

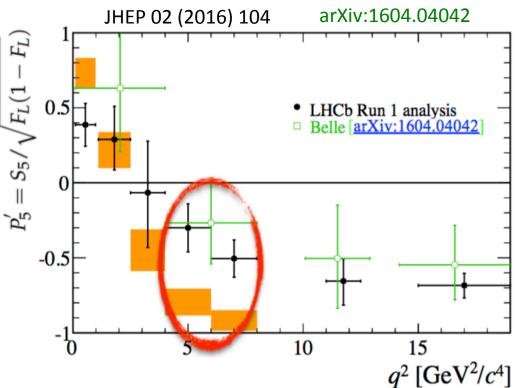
- Recently also ATLAS published their searches with the full Run-1 dataset $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (0.9^{+1.1}_{-0.8}) \times 10^{-9}$
 - No significant signal is seen $\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-) < 4.2 \times 10^{-10} (95\% \text{ CL})$
 - A *p*-value of 4.8% (2 σ) is found for the compatibility of the results with the SM prediction Eur. Phys. J. C76 (2016) 513



Charmless rare decays from LHCb

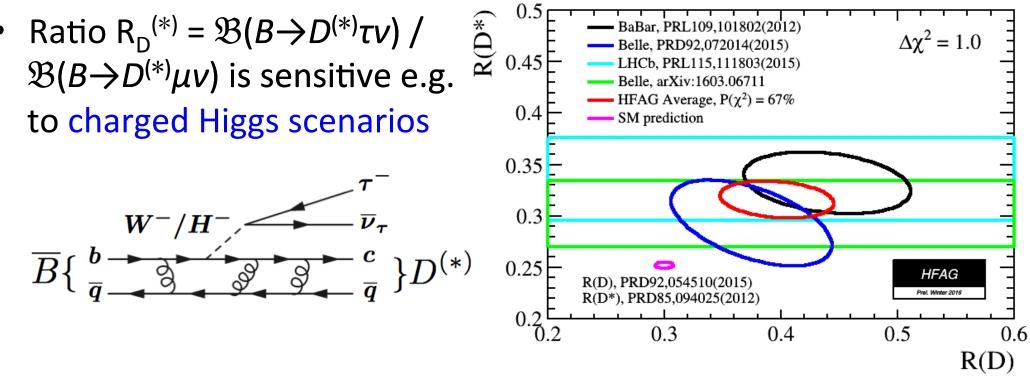
- Particular class of decays that can proceed only through so-called annihilation diagrams
- B⁰→K⁺K⁻ decay observed for the first time after many years of searches

 Significance 5.8σ



 $\mathcal{B}(B^0 \to K^+ K^-) = (7.80 \pm 1.27 \pm 0.81 \pm 0.21) \times 10^{-8}$ $\mathcal{B}(B^0_s \to \pi^+ \pi^-) = (6.91 \pm 0.54 \pm 0.63 \pm 0.19 \pm 0.40) \times 10^{-7}$

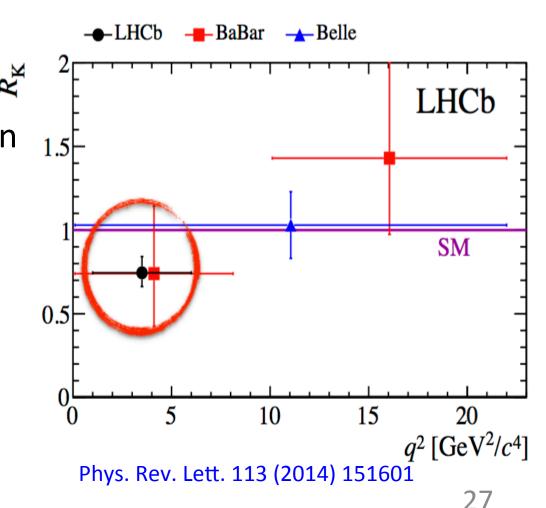
• The $B^0 \rightarrow K^+ K^-$ is the rarest *B*-meson decay into a fully hadronic final state ever observed LHCb-PAPER-2016-036 arXiv:1610.08288


Angular analysis of $B^0 \rightarrow K^* \mu^+ \mu^-$

- Well established "anomaly"
 - Observables are q² (dimuon mass squared) and 3 angles
 - Angular distributions provide many observables sensitive to different sources of New Physics see e.g. JHEP 05 (2013) 137

- Some global theoretical fits require non-SM
 contributions to accommodate the data see e.g. JHEP 06 (2016) 092
- However, genuine QCD effects can also be an explanation
 more efforts needed to clarify the picture see e.g. JHEP 06 (2016) 116

LFU in $B \rightarrow D^{(*)} \tau v$


- Measurements of R(D) and $R(D^*)$ by BaBar, Belle and LHCb
 - Overall average shows a 4σ discrepancy from the SM
- More analyses about $b \rightarrow c \tau v$ are ongoing at Belle and LHCb
- LHCb can also perform measurements with other *b* hadrons
 - e.g. B_s , B_c and Λ_b decays will help to better understand the global picture \rightarrow stay tuned!

More LFU tests

• Ratio (R_K) of branching fractions of $B^+ \rightarrow K^+ \mu^+ \mu^-$ to $B^+ \rightarrow K^+ e^+ e^-$ expected to be unity in the SM with excellent precision

$$R_{K} = \frac{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{d\Gamma[B^{+} \to K^{+}\mu^{+}\mu^{-}]}{dq^{2}} dq^{2}}{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{d\Gamma[B^{+} \to K^{+}e^{+}e^{-}]}{dq^{2}} dq^{2}}$$

- Observation of LFU violation would be a clear sign of New Physics
- LHCb observed a 2.6σ
 deviation from SM in the low q² region
- New measurements
 expected soon, e.g. R_{κ*}

LHC luminosity prospects

	LHC era			HL-LHC era		
	Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2021-24)	Run 4 (2027-30)	Run 5+ (2031+)	
ATLAS, CMS	25 fb ⁻¹	100 fb ⁻¹	300 fb ⁻¹	\rightarrow	3000 fb^{-1}	
LHCb	3 fb ^{−1}	8 fb ⁻¹	\rightarrow	50 fb ⁻¹	*300 fb ⁻¹	

* assumes a future LHCb upgrade to raise the instantaneous luminosity to 2x10³⁴ cm⁻²s⁻¹

- LHC is delivering luminosity at an incredibly high pace in Run-2
 - And remember that beauty production cross section roughly doubles passing from 7 to 13-14 TeV *pp* collisions
- LHCb (phase-1) upgrade comes already after Run-2, whereas the HL (phase-2) ATLAS and CMS upgrades come after Run-3
- But LHCb is now promoting a phase-2 upgrade for Run 5+ too

http://www.hep.manchester.ac.uk/theatre-of-dreams/index.html

Concluding remarks

- LHC is nowadays a gold mine for our physics, and this is just started
 - Impressive harvest so far!
 - Still to exploit full Run-1 potential, and beginning to deploy that of Run-2
 - And exciting times ahead with Belle II approaching data taking
- Some interesting anomalies to be studied more in depth during Run-2 and beyond
- In the current unclear state with perspectives in fundamental physics, it is necessary to have a programme as diversified as possible
 - In the unfortunate event that no direct evidence of NP pops out of the LHC, flavour physics can play a key role to indicate the way for future developments of elementary particle physics
 - And otherwise, flavour physics will be a crucial ingredient to understand the structure of what lies beyond the SM
- Just an appetiser today → new results to come in the course of the week not unveiled today!