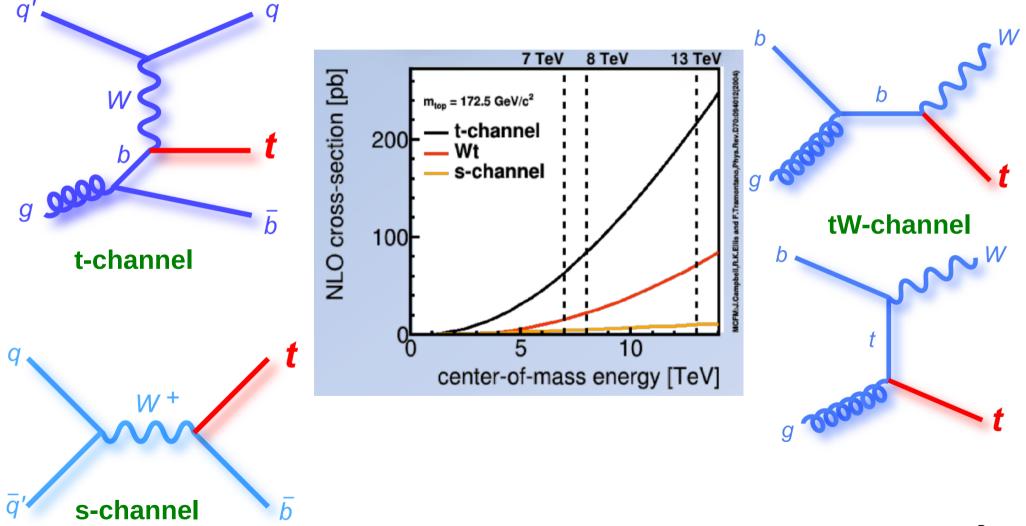


CKM Physics with Top

Jyothsna Rani Komaragiri Centre for High Energy Physics (CHEP), Indian Institute of Science (IISc), Bengaluru

for CMS & ATLAS collaboration

CKM2016: 9th International Workshop on the CKM Unitarity Triangle 28th Nov - 2nd Dec 2016 TIFR, Mumbai

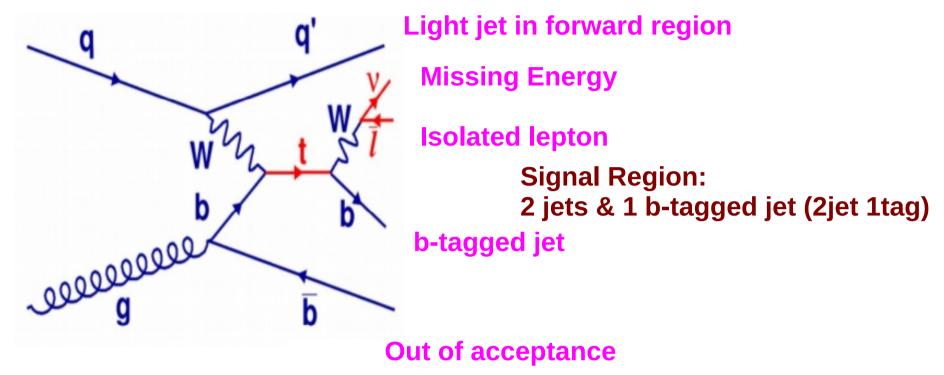


Outline

- CKM Physics with Single Top
 - Single top measurements at CMS & ATLAS
 - Cross section
 - CKM matrix element V_{tb}
 - Ratio of cross section in t-channel (R_{t-ch})
- CKM Physics with Top pairs
 - Top pair production at CMS
 - Br(t → Wb)/Br(t → Wq) where q = d, s, b & indirect determination of CKM matrix element V_{tb}
- Summary

CKM Physics with Single Top

Single top quarks are produced via electroweak interaction:


Interesting features of single top

The production of single top quarks provides a unique testing ground for the study of electroweak processes:

- Single top production cross section is proportional to the strength of Wtb interaction
 - Probe anomalous Wtb couplings
- Direct measurement of the Cabibbo–Kobayashi–Maskawa (CKM) matrix element |Vtb|
- Provide additional handle to constrain PDFs
 - The cross-section ratio top-quark/top-antiquark production is sensitive to the u/d-quark ratio in the PDF sets.
- Polarized sample:
 - Allows study of top quark polarization
- Sensitive to FCNC with top quarks
- Looking for signs of new physics:
 - sensitive to new physics via s-channel (new resonances like H[±], W')

t-channel Single top

Final state signature



Control/Validation Regions:

- CMS: ttbar (3jet 2tag, 3jet 1tag), QCD & W+jets (2jet 0tag)
- ATLAS: ttbar (3jet 2tag), W+jets (2jet 1loose-tag)

Cross section @ 13 TeV

Signal discrimination: artificial neural network is trained in 2jet 1tag Important inputs: light jet |η|, reconstructed top mass

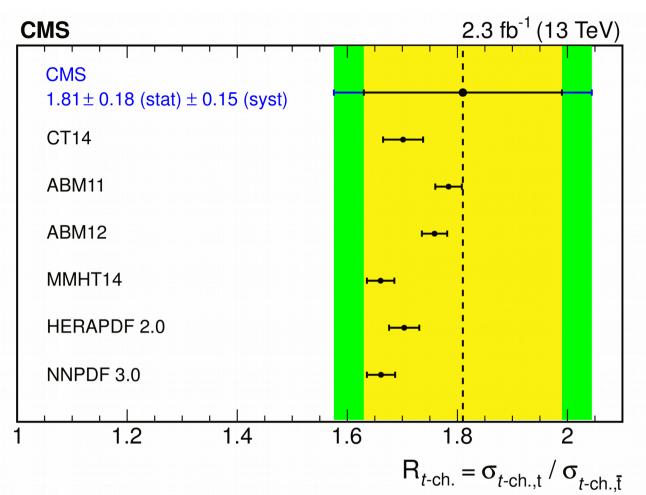
Events with non-isolated lepton and low mT(W) are used in QCD estimation

Analysis Strategy:

simultaneous fit in 3 regions 2jet 1tag, 3jet 1tag, 3jet 2tag

arXiv:1610.00678, Submitted to Phys.Lett.B

 σ (t +t⁻⁻) = 232 ± 13 (stat) ± 12(exp) ± 26 (theo) ± 6(lumi) = 232 ± 31 pb

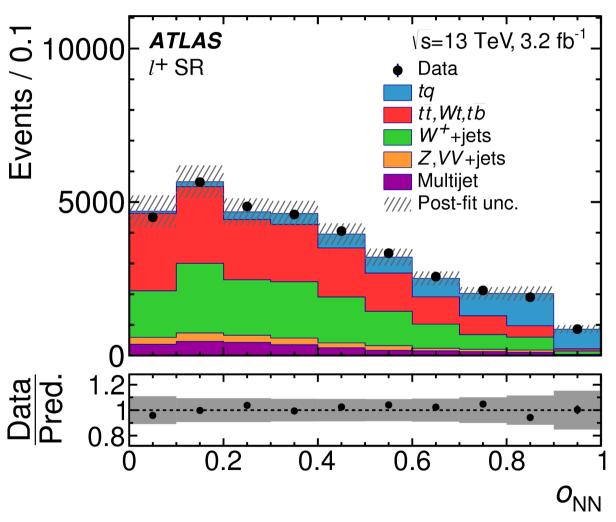

Cross section ratio @ 13 TeV

The charge of the top quark is connected to the type of the incoming light-flavour quark

→ top-quark/top-antiquark production is sensitive to d/u-quark ratio

All PDF predictions are in agreement with the measurement

arXiv:1610.00678, Submitted to Phys.Lett.B



$$\sigma_{t-ch, t} = 150 \pm 8 \text{ (stat)} \pm 9 \text{ (exp)} \pm 18 \text{ (theo)} \pm 4 \text{ (lumi)} \text{ pb} = 150 \pm 22 \text{ pb}$$

 $\sigma_{t-ch, t} = 82 \pm 10 \text{ (stat)} \pm 4 \text{ (exp)} \pm 11 \text{ (theo)} \pm 2 \text{ (lumi)} \text{ pb} = 82 \pm 16 \text{ pb}$
 $R_{t-ch} = 1.81 \pm 0.18 \text{ (stat)} \pm 0.15 \text{ (syst)}$

CKM matrix element V tb (|V tb| >> |V ts| >> |V td|): |f_{LV} V _{tb} | = 1.03 ± 0.07(exp) ± 0.02(theo)

Cross section @ 13 TeV

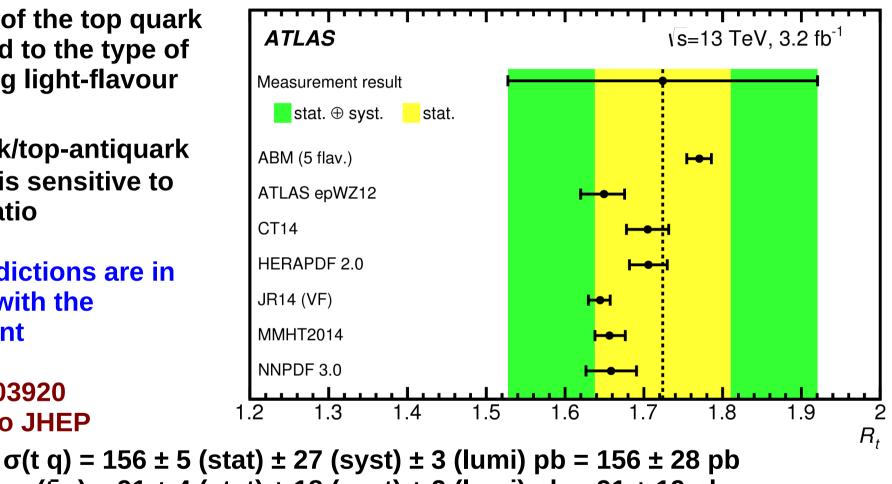
Signal discrimination Neural Network is trained in 2jet 1tag

Important inputs: reconstructed top mass, jet pair mass m(jb), transverse W boson mass light jet |η|

Analysis regions are separated into + and – lepton charge tf normalisation is controlled by using 3jet 2tag events W+jets normalisation is estimated using 2jet 1loose-tag

arXiv:1609.03920 Submitted to JHEP

 $\sigma(tq + fq) = 247 \pm 6 (stat) \pm 45 (syst) \pm 5 (lumi) pb = 247 \pm 46 pb$


Cross section ratio @ 13 TeV

The charge of the top quark is connected to the type of the incoming light-flavour quark

 \rightarrow top-quark/top-antiquark production is sensitive to d/u-quark ratio

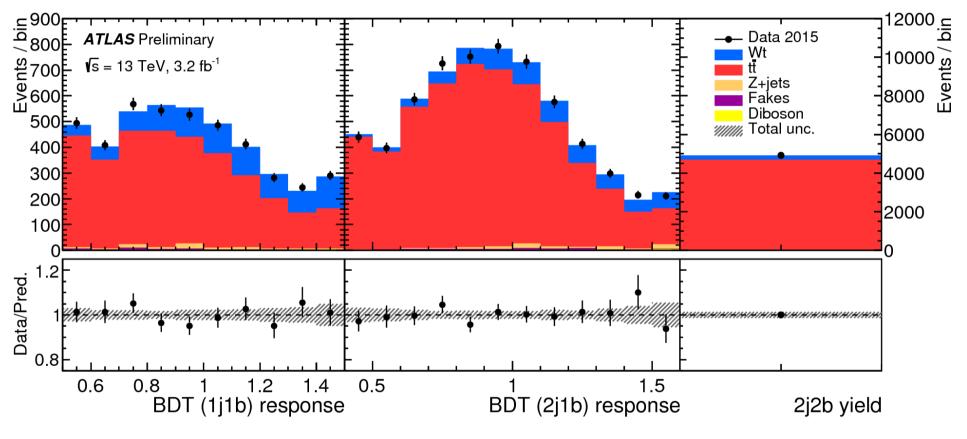
All PDF predictions are in agreement with the measurement

arXiv:1609.03920 Submitted to JHEP

9

 $\sigma(f q) = 91 \pm 4$ (stat) ± 18 (syst) ± 2 (lumi) pb = 91 ± 19 pb R_. = 1.72 ± 0.09 stat ± 0.18 syst

CKM matrix element V tb (|V tb| >> |V ts| >> |V td|): $|f_{LV} V_{tb}| = 1.07 \pm 0.01$ (stat.) ± 0.09 (syst.) ± 0.02 (theor.) ± 0.01 (lumi.)

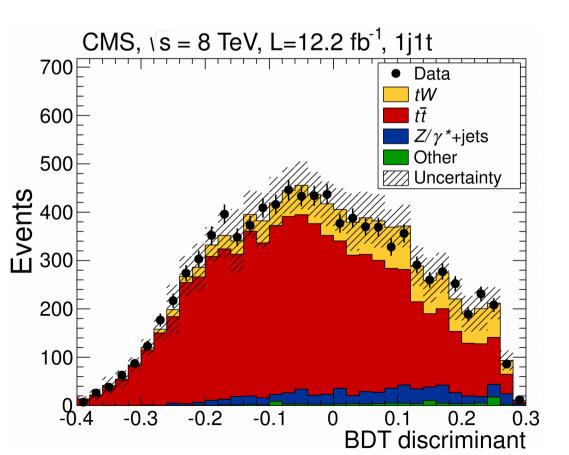

tW-channel Single top @ 13TeV

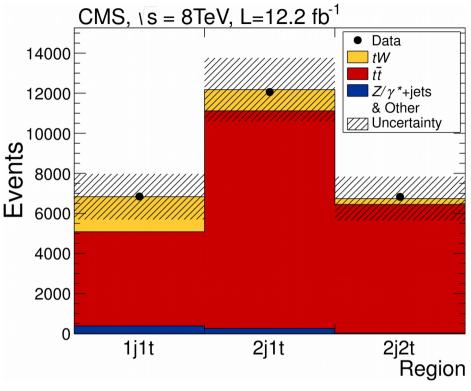
4TLAS Preliminary $10000 \quad \sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ Dilepton (ee, eµ, µµ) Channel Data 2015 Wt Signal Regions: 1jet 1tag, 2jet 1tag Z+jets 8000 Others ///, Total syst. • Two BDTs are trained tW and 6000 ttbar for the two signal regions: 4000 • 1jet 1tag (1j1b) region: 2000 pTsys(l1 l2 ETmiss j1), ΔpT(ℓ1 ℓ2 ETmiss j1) Data/Pred. 1.4 • 2jet 1tag (2j1b) region: 0.8 ■ pTsys(ℓ1, ℓ2) 0.6 Δ R(ℓ1 ℓ2, ETmiss j1 j2) 2j2b 2j1b 1j0b 2j0b 1j1b Regions **ATLAS-CONF-2016-065**

tW-channel Single top @ 13TeV

Signal extraction: Profile maximum likelihood fit

ATLAS-CONF-2016-065


Measured cross section: $\sigma(Wt) = 94 \pm 10 \text{ stat }^{28}_{-23}$ syst pb SM: σ (Wt) = 71.1 ± 3.9 pb


Significance: 4.5 σ

tW-channel Single top observation @ 8TeV

- Dilepton (ee, eµ, µµ) Channel
- Signal Region: 1jet 1tag
- BDT is trained tW and ttbar for the signal region

 σ_{meas} = 23.4 ± 5.4 pb

 6.1σ significance, First observation

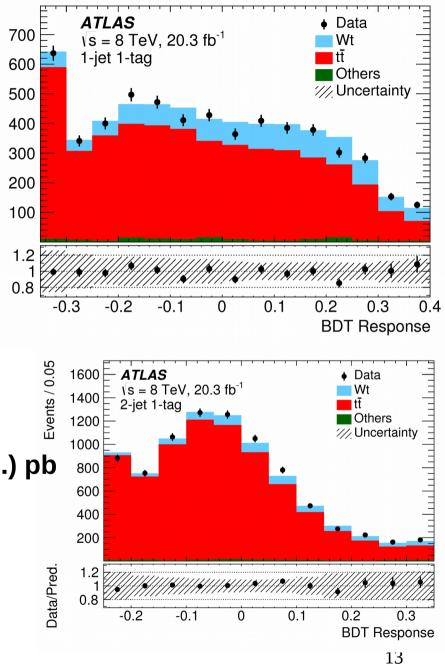
|V tb | = 1.03 ± 0.12 (exp.) ± 0.04 (th.)

Phys. Rev. Lett. 112 (2014) 231802

tW-channel Single top @ 8TeV

Events / 0.05

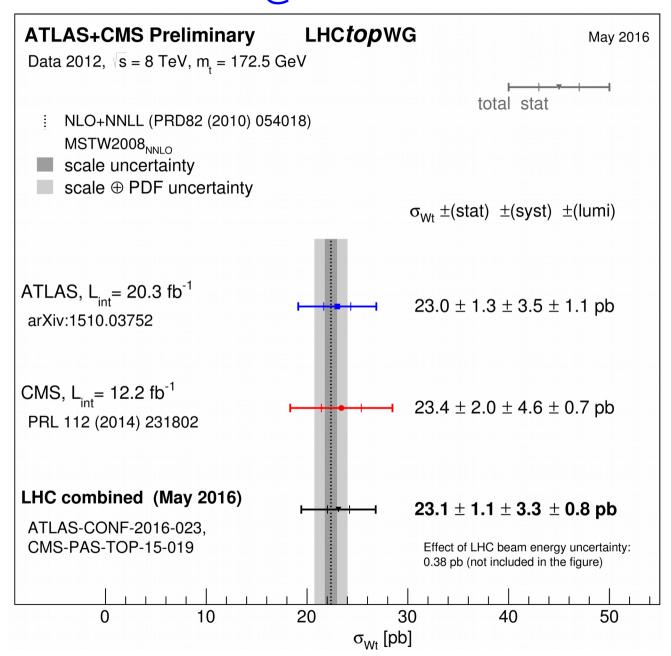
Data/Pred.


- Dilepton (ee, eµ, µµ) Channel
- Signal Region: 1jet 1tag
- BDT used to discriminate signal and background
- Profile likelihood fit to BDT discriminant simultaneously in 1jet 1tag, 2jet 1tag and 2jet 2tag regions

$$\sigma_{tw}$$
 = 23.0 ± 1.3 (stat.) $^{+3.2}_{-3.5}$ (syst.) ± 1.1 (lumi.) pb

 7.7σ observed significance

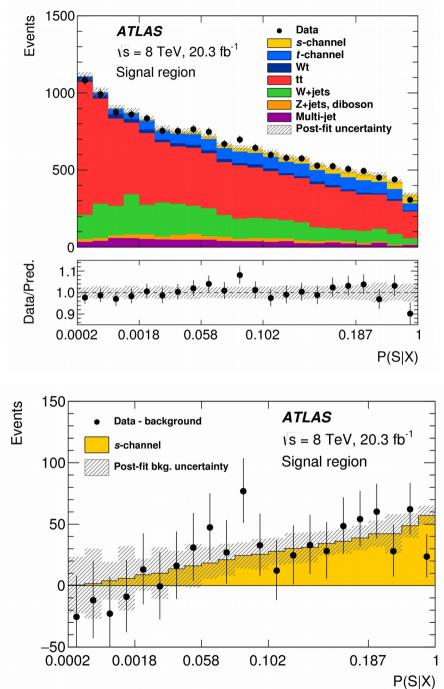
 $|f_{LV} V tb| = 1.01 \pm 0.1$


JHEP01(2016)064

Combination of tW cross-section measurements @ 8TeV

CMS-PAS-TOP-15-019

s-channel Single top evidence @ 8TeV



- Signal Region: 2jet 2tag
- Matrix element method to separate signal and background
- Profile likelihood fit of the signal and background templates of signal probability P(S|X)

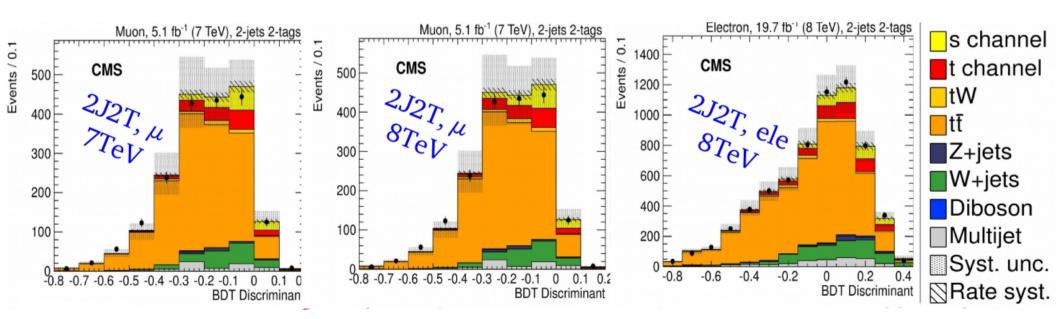
 σ (tb) = 4.8 ± 0.8 (stat) $^{1.6}_{-1.3}$ (syst) pb

SM: $\sigma = 5.2 \pm 0.2 \text{ pb}$

Significance: 3.2 σ

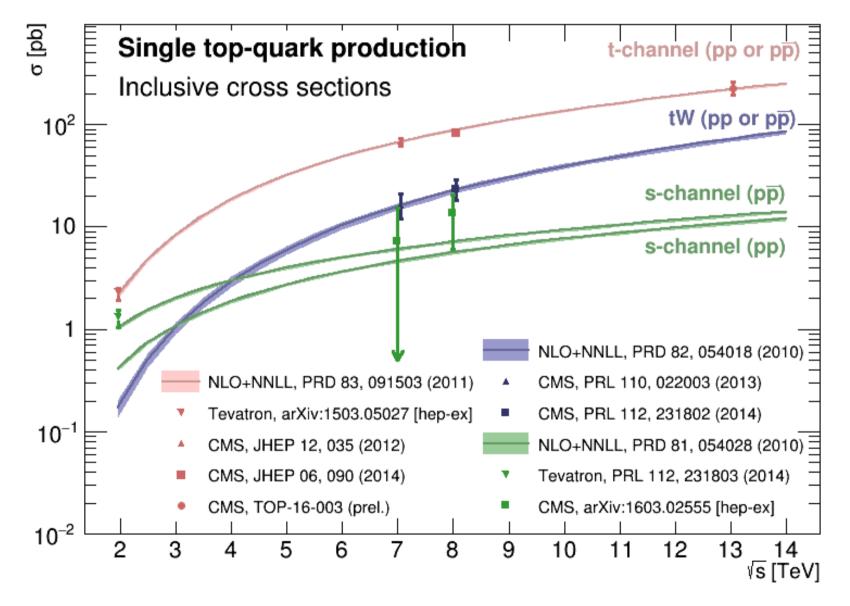
Phys. Lett. B 756 (2016) 228-246

s-channel Single top @ 7 & 8TeV

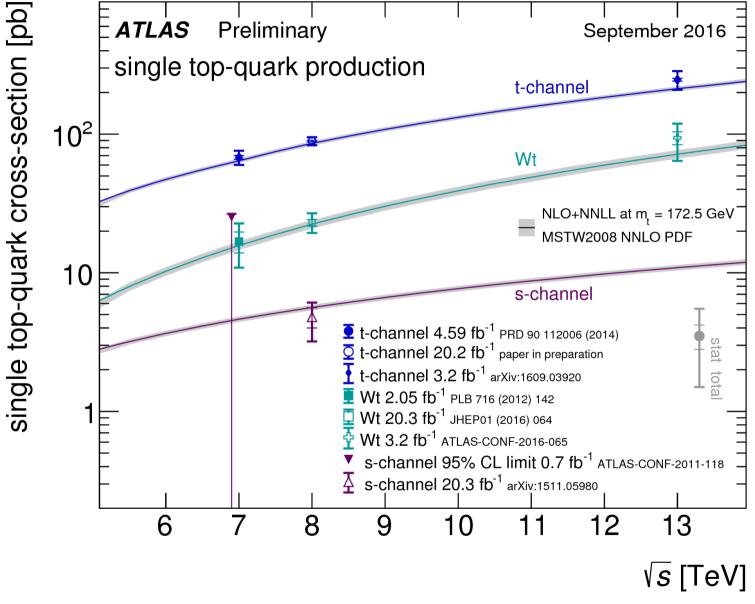

Signal extraction Strategy

- For electron & muon at 7 & 8TeV, BDTs trained in 2jet 1tag (2J2T), 2jet 1tag (2J1T) and 3jet 2tag (3J2T)
 - In 2J2T: schannel vs rest
 - In 3J2T: ttbar vs rest
 - In 2J1T: W+jets vs rest
- Simultaneous fit in signal and control regions

$\sigma_s = 7.1 \pm 8.1 \, ({\rm stat} + {\rm syst}) \, {\rm pb}, \quad {\rm muon \ channel}, \, 7 \, {\rm TeV};$

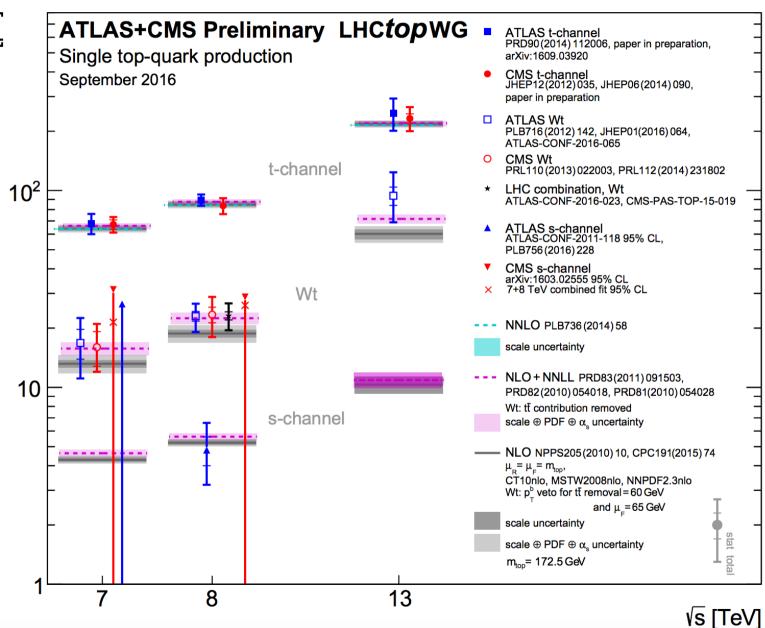

- $\sigma_s = 11.7 \pm 7.5 \, ({\rm stat\,+\, syst}) \, {\rm pb}, \ \, {\rm muon \ channel}, \, 8 \, {\rm TeV};$
- $\sigma_s = 16.8 \pm 9.1 \,(\text{stat} + \text{syst}) \,\text{pb}, \text{ electron channel, 8 TeV};$
- $\sigma_s = 13.4 \pm 7.3 \,(\text{stat} + \text{syst}) \,\text{pb}, \text{ combined}, 8 \,\text{TeV}.$

JHEP 09 (2016) 027


Summary of single top cross section measurements

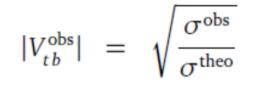
From CMS PhysicsResultsTOPSummaryFigures

Summary of single top cross section measurements


From ATLAS CombinedSummaryPlotsTOP

Summary of cross-section measurements

Inclusive cross-section [pb]

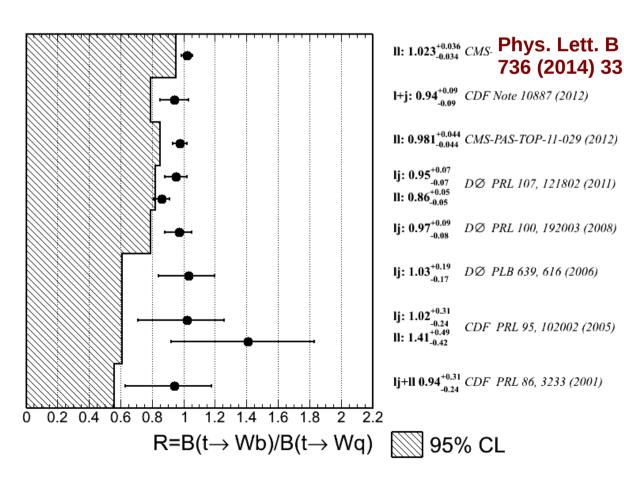


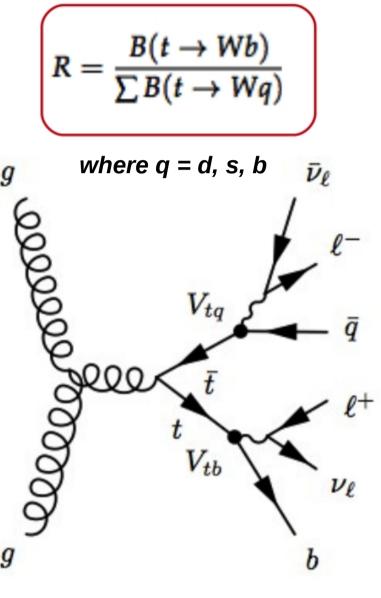
From LHCTopWGSummaryPlots

Summary of CKM matrix element Vtb

- Cross section is proportional to |Vtb|²
 - In the Standard Model with 3 quark generation
 - → one expects V tb ~ 1 (unitarity):

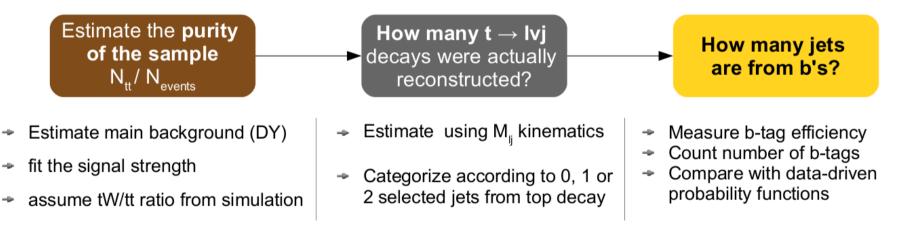
- Assumptions for the extraction:
 - Independence of 3 quark generations
 - Left-handed weak interaction
 - → Top quark decays only into b quarks: (V td , V ts ≪ V tb)
- Can be done with all three single top processes


From LHCTopWGSummaryPlots


ATLAS+CMS Preliminary	LHC <i>top</i> WG	September 201 E X
$ f_{LV}V_{tb} = \sqrt{\frac{\sigma_{meas}}{\sigma_{theo}}}$ from single top qua	rk production	
σ _{theo} : NLO+NNLL MSTW2008nnlo PRD83 (2011) 091503, PRD82 (2011) PRD81 (2010) 054028		
$\Delta \sigma_{\text{theo}}$: scale \oplus PDF		total theo
m _{top} = 172.5 GeV		$ \mathbf{f}_{LV}\mathbf{V}_{tb} \pm (meas) \pm (theo)$
-channel:		
ATLAS 7 TeV ¹ PRD 90 (2014) 112006 (4.59 fb ^{−1})	┝┿═┼┥	$1.02 \pm 0.06 \pm 0.02$
ATLAS 8 TeV ^{1.2} Paper in preparation (20.2 fb ⁻¹)	⊨ = + 1	$1.028 \pm 0.042 \pm 0.024$
CMS 7 TeV JHEP 12 (2012) 035 (1.17 - 1.56 fb ⁻¹)	⊢ • •	$1.020 \pm 0.046 \pm 0.017$
CMS 8 TeV JHEP 06 (2014) 090 (19.7 fb ⁻¹)	⊢ <mark>∣●</mark> ⊑ I	$0.979 \pm 0.045 \pm 0.016$
CMS combined 7+8 TeV JHEP 06 (2014) 090	<mark>⊧+e+-1</mark>	$\textbf{0.998} \pm \textbf{0.038} \pm \textbf{0.016}$
CMS 13 TeV ² paper in preparation (2.3 fb ⁻¹)	⊢ ∔●∔→1	$1.03 \pm 0.07 \pm 0.02$
ATLAS 13 TeV ² arXiv:1609.03920 (3.2 fb ⁻¹)	 ── ■ ──	$1.07 \pm 0.09 \pm 0.02$
Vt:		
ATLAS 7 TeV PLB 716 (2012) 142-159 (2.05 fb ⁻¹)	+	$1.03^{+0.15}_{-0.18} \pm 0.03$
CMS 7 TeV PRL 110 (2013) 022003 (4.9 fb ⁻¹)	⊢ + ● + −−−−	$1.01^{+0.16}_{-0.13}$ $^{+0.03}_{-0.04}$
ATLAS 8 TeV ^{1.3} JHEP 01 (2016) 064 (20.3 fb ⁻¹)	► <mark>►+</mark> ■+−−	$1.01 \pm 0.10 \pm 0.03$
CMS 8 TeV ¹ PRL 112 (2014) 231802 (12.2 fb ⁻¹)	► <mark></mark>	$1.03 \pm 0.12 \pm 0.04$
LHC combined 8 TeV ^{1,3} ATLAS-CONF-2016-023, CMS-PAS-TOP-15-019	<mark>⊦ ¦ ▼ ¦ − 1</mark>	$1.02 \pm 0.08 \pm 0.04$
ATLAS 13 TeV ² ATLAS-CONF-2016-065 (3.2 fb ⁻¹)	+	1.14 ± 0.24 ± 0.04
-channel:		
ATLAS 8 TeV ³ PLB 756 (2016) 228 (20.3 fb ⁻¹)		$0.93 {}^{+ 0.18}_{- 0.20} \pm 0.04$
		1 including top-quark mass uncertainty 2 σ_{theo} : NLO PDF4LHC11 NPPS205 (2010) 10, CPC191 (2015) 74 3 including beam energy uncertainty
0.4 0.6 0.	.8 1	1.2 1.4 1.6 1.8

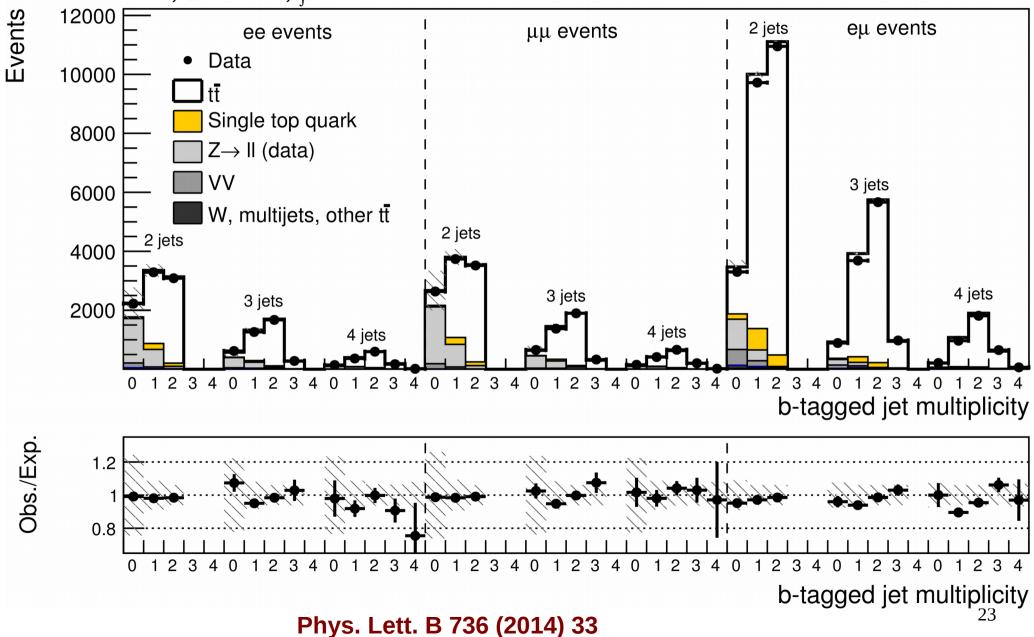
CKM Physics with Top Pairs @8TeV

- Measure the flavor content of quarks/jets in top pairs
- Indirect measurement of |Vtb|: Under the assumption of the unitarity of the 3 × 3 CKM matrix, R = |Vtb|2
- Long history of measurements:



Strategy

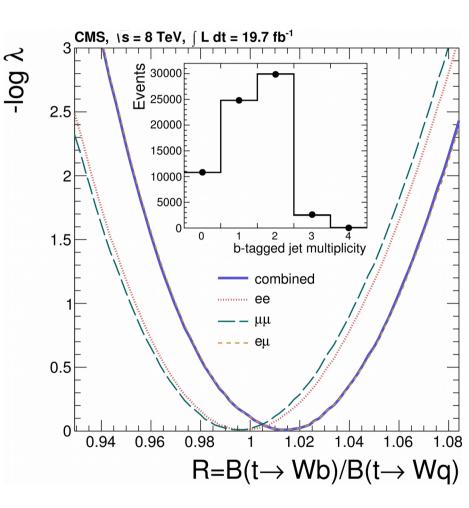
- Top pairs: We select dilepton events in data
 - Lower branching ratio (≈0.065) but cleaner signature (S/S+B≈70-90%)
 - ≥ 2 isolated prompt leptons with op. sign + ≥ 2 jets + ETmiss >40 GeV for ee/µµ channels
- Count N(t \rightarrow Wb) and compare to the total N(t \rightarrow Wq)



- $R = B(t \rightarrow Wb) / B(t \rightarrow Wq)$ is extracted from a fit to 36 event categories
 - Corresponding to dilepton channel x number of jets x number of btagged jets

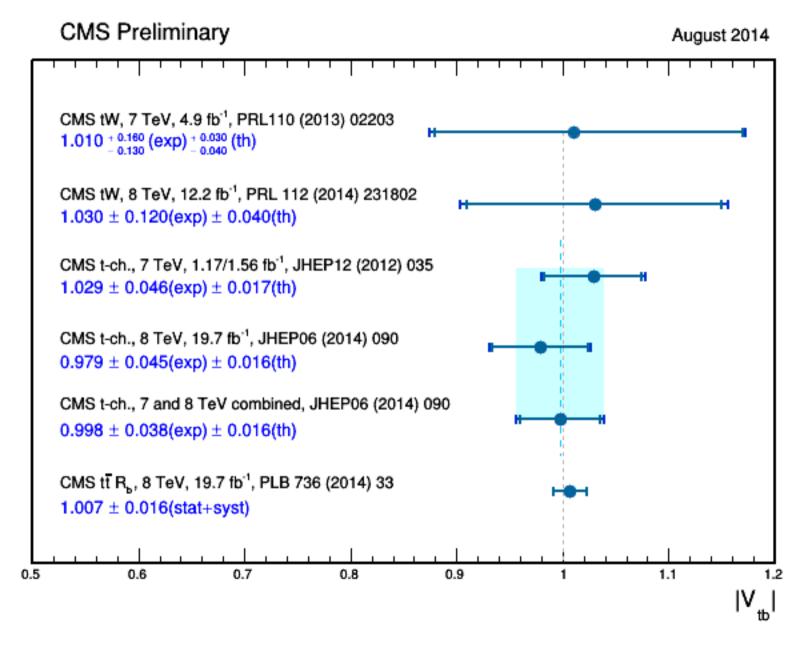
b-tagged jet multiplicity in dilepton channels

CMS, $\sqrt{s} = 8 \text{ TeV}$, $\int L dt = 19.7 \text{ fb}^{-1}$


Extraction of R & V_{tb}

 By counting the number of b jets per event, an unconstrained value of

R = 1.014 ± 0.003 (stat) ± 0.032 (syst) is measured.


- Measured R is in good agreement with the standard model prediction.
- A lower limit R > 0.955 at the 95% confidence level is obtained after requiring R lower than one, and a lower limit on the Cabibbo-Kobayashi-Maskawa matrix element

V tb | > 0 . 975 is set at 95% confidence level when assuming the unitarity of the three-generation CKM matrix.

Summary of Vtb from single top and top pairs @ 7 & 8TeV

From CMS PhysicsResultsTOPSummaryFigures

Summary

- Direct measurement of CKM matrix element $V_{\rm tb}$ using single top production channels with CMS and ATLAS is presented.
- Indirect measurement of V_{tb} by measuring the ratio of top quark branching fractions in top pairs dilepton final state at CMS is presented.
- Stay tuned to more results from already collected 13TeV data!

Thanks