

Flavour physics: a brief tour

Jim Libby (IIT Madras)

Flavour physics: a brief tour-taste

Jim Libby (IIT Madras)

Overview

- Particle physics and frontiers
- Some flavour history
 - Flavour as a predictor
 - Belle and CP violation
 - Belle II and complementarity with LHCb
- Current cooling topic
 - Anomalies
- Future

The standard model flavour

The standard model

ICFA school

Problems

• Empirical

- Neutrinos are massive
- Dark matter
- Dark energy!!!!
- Matter rather than antimatter
- Gravity

<u>Aesthetic</u>

- Why three of everything?
- Why eighteen parameters?
 - Many with a distinct hierarchy?
- Why do we need to know them to 18 decimal places?
- Unification

h

ICFA school

8

Problems: addressed by flavour

• Empirical

- Neutrinos are massive
- Dark matter
- Dark energy!!!!
- Matter rather than antimatter
- Gravity

<u>Aesthetic</u>

- Why three of everything?
- Why eighteen parameters?
 - Many with a distinct hierarchy?
- Why do we need to know them to 18 decimal places?
- Unification

Flavour physics – history of discovery

- Particle zoo of mesons and baryons discovered in 1950s and early 1960s lead to the quark model
 - up (u)
 - down (d)
 - strange (s)
- An allowed but rare decay such as

 $K_L^0(s\overline{d}) \to \mu^+\mu^-$

Predicted but not seen!

$$\frac{S}{d} \quad u \quad W^{-} \quad v \quad \mu^{-} \\ \psi \quad \mu^{+} \quad \mu^{+}$$

Flavour physics – history of discovery

 $-\sin\theta_{c}$

Glashow

liopoulos

Maiani

OPhys Rev. 02, 1285 (1970)

 $m_c \sim 3 m_{\kappa}$

Such rare virtual processes tell you about higher energy particles

ARGUS: B mixing \Rightarrow heavy top

OBSERVATION OF B⁰-B⁰ MIXING

ARGUS Collaboration

CKM matrix

- Two by two mixing matrix proposed by Cabibbo
 - Kobayashi-Maskawa proposed third generation to explain observed CP violation by Cronin and Fitch
- 3 × 3 unitary complex matrix
 - 4 parameters
 - 3 mixing angle and 1 phase
- Intergenerational coupling disfavoured

$\left(\begin{pmatrix} u & cc \end{pmatrix} \begin{bmatrix} V & u & V & V \\ cos^{ud} \theta_C & V^{us} \sin \theta_C^b \\ V & V^{cs} \cos \theta_C^b \\ V_{td} & V^{cs} \cos \theta_C^b \end{bmatrix} \begin{pmatrix} d \\ d \\ s \\ s \\ b \end{pmatrix}$

Relative magnitude of elements

Substituting CP violation:
the unitarity triangle
1)
$$\begin{pmatrix} 1-\lambda^2/2 \\ -\lambda \\ \lambda^3 [1-(\rho-i\eta)] \end{pmatrix}$$
 λ
 $\lambda^3 [1-(\rho-i\eta)] + O(\lambda^4)$
2) Exploit unitarity (1st and 3rd col.) $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

 $\phi_1 = \beta_1$ $= \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$ $\frac{1}{1-\rho-i\eta}\bigg)$ $\simeq arg$

Belle

- Operation from 1999 to 2010
- $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ for CKM measurements
- Asymmetric energy to allow time-dependent measurements
- Coherent production of $B^0 \overline{B^0}$
- Low multiplicity
- Detectors with good tracking, PID and calorimetry
 - plus hermeticity for full event reconstruction/tagging

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

The Golden Mode

CP violation in the 'interference of mixing and decay amplitudes' - decay time dependent

$$A_{CP}(\Delta t) = \frac{\Gamma\left[\overline{B}^{0}(\Delta t) \to f\right] - \Gamma\left[B^{0}(\Delta t) \to f\right]}{\Gamma\left[\overline{B}^{0}(\Delta t) \to f\right] + \Gamma\left[B^{0}(\Delta t) \to f\right]} = S_{f}\sin(\Delta m_{d}\Delta t) - C_{f}\cos(\Delta m_{d}\Delta t)$$

In SM $S_f = \sin 2\beta$ and $C_f = 0$ when no CPV in f

Chiara La Licata ICHEP Conference note in preparation

Time-dependent CPV violation

7-GeV electrons on 4-GeV positrons produce Y(4S) that decays promptly in a quantum-coherent BB pair

$sin2\phi_1$ results

Apply analysis to $B^0 \rightarrow J/\psi K_s^0$ sample

Source	$\sigma(S_{CP})$	$\sigma(A_{CP})$
Statistical	0.0622	0.0439
$B^0 \to D^{(*)-}\pi^+$ sample size	0.0111	0.0093
Analysis bias	0.0080	0.0020
Signal charge asymmetry	0.0027	0.0126
$w_6^+ = 0$ limit	0.0014	0.0001
Resolution function parametrization	0.0039	0.0008
$ au_{B^0},\Delta m_d$	0.0007	0.0002
Alignment	0.0020	0.0042
Beam spot	0.0024	0.0020
Momentum scale	0.0005	0.0013
$\sigma_{\Delta t}$ binning	0.0050	0.0051
Multiple candidates	0.0005	0.0008
Tag-side interference	0.0020	$^{+0.0380}_{-0.000}$
Total systematic	0.0159	$^{+0.0418}_{-0.0173}$

Milestone: tools are ready for an impactful $sin2\phi_1$ measurement

What next? Gluonic penguin modes $B^0 \to \phi K^0_S$ and $B^0 \to \eta' K^0_S$ - BSM physics can shift S_{CP} and A_{CP}

Candidates / (0.5 ps)

Asymmetry

Over constraint

Tree level only

Belle and Babar achievements

Belle II's rival LHCb in a slide

- 13 TeV pp collisions
 - trillion bb/2 fb⁻¹
 - 6 fb⁻¹@ 13 TeV
 - + 3 fb ⁻¹ @ 7/8 TeV
- Forward geometry gets both b quarks in acceptance and boosted – exploit b lifetime to separate background
- RICHes for π/K separation
- Full trigger bandwidth for B physics

Belle II: can never have too much of a good thing (× 50 Belle)

• But isn't LHCb doing this already?

Property	LHCb	Belle II	
$\sigma_{b\bar{b}}$ (nb)	~150,000	~1	
$\int L dt (fb^{-1})$	~25	~50,000	
Background level	Very high	Low	
Typical efficiency	Low	High	
π^0 , K_S reconstruction	Inefficient	Efficient	
Initial state	Not well known	Well known	
Decay-time resolution	Excellent	Very good	
Collision spot size	Large	Tiny	
Heavy bottom hadrons	<i>B_s, B_c, b</i> -baryons	Partly B _s	
au physics capability	Limited	Excellent	
B-flavor tagging efficiency	3.5 - 6%	36%	

"Moore's" Law of Luminosity

The path to higher luminosity

(1) Smaller β_{y}^{*} (20 x)

(2) Increase beam currents (~2-3x)

SUPERKEKB

Integrated luminosity so far Belle II Online luminosity Expr

Belle II Collaboration

1024 physicists from 26 countries India: 48 at IITX (X=M, H, G, BBS), MNIT, IISER Mohali, TIFR, PU, PAU, IMSc

ICFA school

Belle II – Silicon Vertex Dectector

Only one layer of pixels for Phase III

Layers 1-2: Pixel Detector

Layers 3-6: Strip Detector

Closer to IP

cmarinas@uni-bonn.de

"VXD-only" tracking

HOT TOPIC: ANOMALIES

ICFA school

Overview of modes with anomalies

• Flavour changing neutral current $b \rightarrow sll$ at loop level only

• Tree level $b \rightarrow c\tau v$ semileptonic

μ^+/τ^+		Pro	Con
	b→sll	New physics reach O(10 TeV)	One experiment
	b→cτν	Three experiments	New physics near the EW scale

 $B \rightarrow K^*(892)l^+l^-$

- This is a rare flavour changing neutral current process
- The four-body final state allows differential distributions to be probed
 - Large new physics contributions possible as they appear via interference c.f. forward-backward asymmetries in e⁺e⁻
- Also variation with the invariant mass of the l⁺l⁻ system q²

$B \rightarrow K^*(892)l^+l^-$ nomenclature

- Goal is to measure this 4D differential distribution and extract the coefficients from data to compare to the SM predictions
- Much work on defining observables with minimal theoretical uncertainties
- Let us focus on S₅ which get normalized as $P_5' = \frac{S_5}{\sqrt{F_L(1-F_L)}}$ to minimize form factor uncertainties

Theory: S. Descotes-Genon et al., JHEP 12 (2014) 125

P_5' anomaly: the first b \rightarrow sl⁺l⁻

 Constructed in such a way that the form factor dependence is minimized

> 3 σ disagreement with Standard Model

Tests of Lepton Universality Violation (LUV)

$$R_H = \frac{\int \frac{d\Gamma(B \to H\mu^+\mu^-)}{dq^2} dq^2}{\int \frac{d\Gamma(B \to He^+e^-)}{dq^2} dq^2},$$

H=K or K*

- Standard Model prediction ~1 to a few %
 - limited theoretical uncertainties
- $B \rightarrow K^{(*)}J/\psi(I^+I^-)$ bountiful control channel

ICFA school

The results: muons low

arXiv:2212.09153 arXiv:2212.09152

Nothing to see here except the importance of understanding particle ID That does not mean these modes uninteresting

Anomaly related: $B_{(s)} \rightarrow \mu^+ \mu^-$

- Highly suppressed in the SM
- Therefore, readily enhanced by non-SM contributions
- Clean experimental signature
- Theoretically clean: decay constant vs form factors

Semi-tauonic decays

• Tree level in the SM but allows lepton universality tests

• Measure ratios to reduce theoretical and experimental uncertail $R(D) = \frac{\Gamma(\overline{B} \to D\tau v)}{\Gamma(\overline{B} \to D\ell v)} \qquad R(D^*) = \frac{\Gamma(\overline{B} \to D^*\tau v)}{\Gamma(\overline{B} \to D^*\ell v)}$

 BaBar reported an anomalous result PRL 109, 101802 (2012) much activity since

Belle results

- Tag signal by fully reconstructing or identifying a semileptonic (SL) decay of the other B
- Then use residual energy in ECL, missing mass, multivariates and/or lepton momentum to separate signal
- Example: Phys. Rev. D 94, 072007 (2016)
 - Semileptonic tag

- LHCb also in the game using their vertexing prowess Run 1 data only 3 fl
 PV
- Use B flight for transverse momentum and approximate full longitudinal boost to measured component → 20% B momentum resolution
- Template fit in bins of q^2 , E_{μ} and missing-mass square in B's frame
 - New: simultaneously fit to D and D* signal + control samples

3.2 deviation w.r.t. SM

FLAVOUR FUTURE

ICFA school

LHCb status

- New silicon vertex, tracker and SciFi tracker
- 40 MHz readout factor 2-4 more in the trigger efficiency for hadrons (not so important for anomalies)
- LHCb will continue to have a big impact
- CMS and ATLAS also focusing more on B-physics in the future

Belle II data-taking plan

High backgrounds from the beams have made stable running at high luminosity difficult

Peak Luminosity [x10³⁵cm₂s⁻¹ We have not accumulated data at the rate anticipated

Long shutdown ongoing: accelerator and detector improvements

Path to 2 x 10³⁵ cm⁻²s⁻¹ but thereafter more work required

ICFA school

Conclusion

- Particle physics is tackling its problems on three complementary frontiers
 - 1. Energy
 - 2. Cosmic
 - 3. Intensity
- Flavour physics has played a significant role in the development of the Standard Model
- Belle II and LHCb are project that will continue flavour physics at the intensity frontier until the end of the decade