### Getting Ready for Belle II

Prasanth Krishnan

TIFR, Mumbai

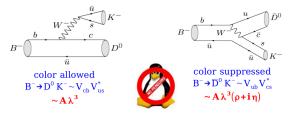
DHEP Annual Meeting May 08-09 2018

Prasanth Krishnan Getting Ready for Belle II TIFR, Mumbai 1 / 16

-

### Outline

- Determination of  $\phi_3$  via  $B^{\pm} \rightarrow D(K_S^0 \pi^+ \pi^-) K^{\pm}$ 
  - Continuum suppression
  - Variable selection
  - Comparison with Belle
- Data production
  - Dress rehearsal
  - Global cosmic run


TIFR, Mumbai

-∢ ≣ ▶

< 口 > < 同

### $\phi_3$ determination

▶ Exploit the interference between  $B^- \to D^0 K^-$  and  $B^- \to \bar{D}^0 K^-$  decays



- Three ways to determine  $\phi_3$ :
  - ▶ GLW method (Gronau-London-Wyler): *CP* eigenstates such as  $K^+K^-$ ,  $\pi^+\pi^-$ , and  $K^0_S\pi^0$
  - ADS method (Atwood-Dunietz-Soni): Doubly Cabibbo-suppressed decays such as Kπ
  - ► GGSZ <sup>1</sup> (or Dalitz) method (Giri-Grossman-Soffer-Zupan): <u>Multibody decays such as</u>  $K_{S}^{0}\pi^{+}\pi^{-}$ ,  $K_{S}^{0}K^{+}K^{-}$ , and  $K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$

<sup>1</sup>A. Giri, Yu. Grossman, A. Soffer and J. Zupan, Phys. Rev. D 68, 054018 (2003).

TIFR, Mumbai

#### $\phi_3$ measurements

- ▶ Ultimate precision  $\approx 1^{\circ}$
- Dominated by  $B \rightarrow D(K_S^0 \pi \pi) K$  mode
  - improvements, even modest, will have large impact on the sensitivity
- Some almost not possible at LHCb:  $K_S^0 \pi^0, K_S^0 \pi \pi \pi^0, K_L^0 \pi \pi$

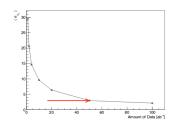
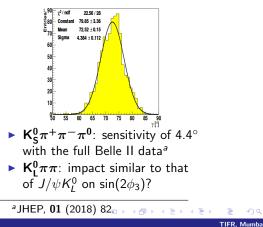




Figure:  $\phi_3$  sensitivity Vs amount of Belle II data collected (ab<sup>-1</sup>).



### $\phi_3$ sensitivity via $B \rightarrow D(K_S^0 \pi^+ \pi^-) K$ decays

- Sensitivity varies across the Dalitz bins
  - GLW like states: Interference of  $B^- \to DK^-$ ,  $D \to K_S^0 \rho$
  - ▶ ADS like states: Interference of  $B^- \rightarrow DK^-$ ,  $D \rightarrow K^*\pi$
- Golden mode to determine  $\phi_3$ !

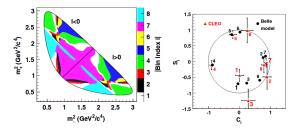



Figure: PRD 85 (2012) 112014.

Need external inputs from charm factory: CLEO-c or BESIII for strong phase differences c<sub>i</sub> and s<sub>i</sub>

# Preliminary study of $B ightarrow D(K_S^0 \pi \pi) K$ in Belle II

|                    | Belle II |         | Belle I | ()     | I. Watson, May 23,2016)  |
|--------------------|----------|---------|---------|--------|--------------------------|
|                    | $B^+$    | $B^{-}$ | $B^+$   | $B^-$  |                          |
| Signal             | 579.3    | 606.0   | 648.6   | 653.0  | -                        |
| $B^+B^-$           | 1844.2   | 1996.2  | 1412.0  | 1405.6 |                          |
| $B^{0}\bar{B}^{0}$ | 334.4    | 352.2   | 158.6   | 142.8  |                          |
| сē                 | 12231.5  | 12505.6 | 7480.4  | 7518.0 |                          |
| UDS                | 7880.3   | 8043.9  | 4280.0  | 4238.6 |                          |
| Total              | 22290.4  | 22897.9 | 13331.  | 13305. |                          |
| Purity             | 0.026    | 0.027   | 0.049   | 0.049  | -                        |
| -                  | 1        |         | 1       |        | continuum suppression !! |

- Performed by I. Watson, without beam background!
- Continuum suppression was not implemented

TIFR, Mumbai

#### Impact of continuum suppression on $\phi_3$ study

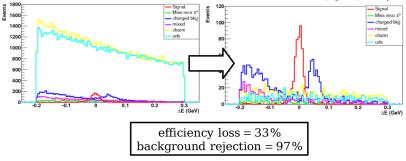
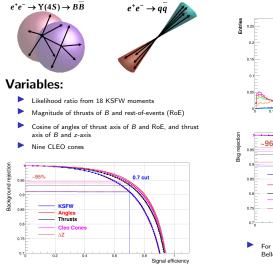
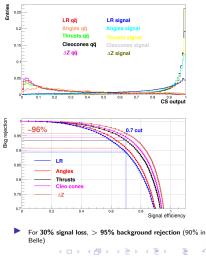



illustration from Resmi P.K. for Belle  $B \rightarrow D(K_S \pi \pi \pi^0) K$  analysis


イロト イ押ト イヨト イヨト


Also see PRL 106 (2011) 231803

Smarter background rejection is needed for 50 ab<sup>-1</sup> Belle II data!

| Prasanth Krishnan          | TIFR, Mumbai |
|----------------------------|--------------|
| Getting Ready for Belle II | 7 / 16       |

#### Continuum suppression

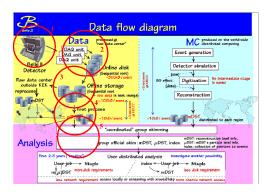




Prasanth Krishnan

Getting Ready for Belle II

TIFR, Mumbai


## $\phi_3/\gamma$ extraction using $B \to D(K_S^0 \pi^+ \pi^-) K$ in Belle II

| Variable/sample                       | I. Watson's                 | Ours                                                    |
|---------------------------------------|-----------------------------|---------------------------------------------------------|
| MC sample                             | MC5                         | MC9                                                     |
| data size                             | 2.0 ab <sup>-1</sup> (BGx0) | 0.2 ab <sup>-1</sup> (BGx0)/0.8 ab <sup>-1</sup> (BGx1) |
| d0                                    | 0.5 cm                      | "                                                       |
| z0                                    | 1.0 cm                      | "                                                       |
| PID                                   | Tighter cut                 | KID>0.5 for $K^{\pm}$                                   |
|                                       | Tighter cut                 | PiID > 0.5 for $\pi^{\pm}$                              |
| M <sub>KS</sub> 0<br>M <sub>D</sub> 0 | 0.450-0.550 GeV             |                                                         |
| M <sub>D</sub> 0                      | 1.85-1.88 GeV               | "                                                       |
| Mbc_                                  | > 5.25 GeV                  | "                                                       |
| $ \Delta E $                          | 0.15 GeV                    | "                                                       |
| Efficiency                            | 14.8% (BGx0)                | 17.0% (BGx0)                                            |
|                                       |                             | 7.9% (BGx1)                                             |
| Belle efficiency                      | 15.1% (BGx1)                |                                                         |

Table: Selection criteria for  $B \rightarrow D(K_S^0 \pi \pi) K$  decay.

| Sample             | No beam bkg | With beam bkg |  |
|--------------------|-------------|---------------|--|
| Signal             | 1353        | 834           |  |
| $B^+B^-$           | 9982        | 7060          |  |
| $B^{0}\bar{B}^{0}$ | 3763        | 2174          |  |
| cē                 | 100398      | 60278         |  |
| UDS                | 77588       | 45712         |  |
| иū                 | 48656       | 26686         |  |
| dā                 | 8342        | 5747          |  |
| 55                 | 20590       | 13279         |  |
| Total              | 191731      | 115224        |  |
|                    |             | 4 [           |  |

#### Dress rehearsal for Belle II experiment



- Belle collected ~ 1 ab<sup>-1</sup> data for 10+ years
- Belle II → 50 ab<sup>-1</sup> in ~ 5 years, *i.e.* ~ 1 ab<sup>-1</sup> in each month!
- It's of paramount importance to check the performance of central production system towards processing the raw data in a timely manner
- Used Grid for phase III

イロト 不得 とうほう くほとう

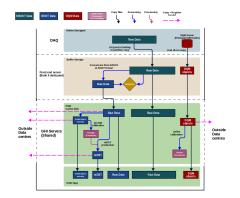
Getting Ready for Belle II

TIFR, Mumbai

3

#### Dress rehearsal 3 (DR3)

- Perform in a similar way as DR2
  - phase 3 (phase 2 for DR2)
  - Grid (KEKCC for DR2)
- ▶ Need to use qq̄ (q = u, d, s, c, b), ee, ττ, and µµ event types with the respective cross-sections
- Produce 1 unit of 0.01 fb<sup>-1</sup>
- Full rehearsal sample  $\rightarrow 1 \text{ ab}^{-1}$  in Grid (20 fb<sup>-1</sup> for DR2)


### Procedure for DR3

#### 1. Raw data:

- One unit of 0.01 fb<sup>-1</sup>
- One "run" of 0.1 fb<sup>-1</sup>: 10 such units → 70 jobs
- ▶ 100 fb<sup>-1</sup>: 70,000 jobs in Grid
- Full DR3 sample of 1 ab<sup>-1</sup>
- Transfer to KEKCC
- 2. DAQ:
  - HLT software trigger information

#### 3. Offline:

- mdst
- Prompt calibration  $\rightarrow$  mdst
- 4. Standalone samples:
  - Signal MC "like" samples
  - For calib/HLT performances



### Comparison of CPU usage with DR2

|     | ent<br>Vent | Raw prod<br>CPU time | Memory   | Raw size<br>(ROOT) | Raw prod<br>log size | mdst prod<br>CPU time | mdst size  | mdst prod<br>log size |
|-----|-------------|----------------------|----------|--------------------|----------------------|-----------------------|------------|-----------------------|
| E   | /           | (sec/event)          | (MB/job) | (kB/event)         | (MB)                 | (sec/event)           | (kB/event) | (MB)                  |
| E   | σĒ          | 1.3                  | 1035.3   | 49.3               | 0.2                  | 2.1                   | 11.1       | 0.06                  |
| 6   | ē           | 1.1                  | 1053.1   | 46.6               | 0.3                  | 1.6                   | 9.7        | 0.10                  |
| 5   | 5           | 1.0                  | 891.1    | 45.1               | 0.1                  | 1.2                   | 8.9        | 0.06                  |
| 6   | lā          | 1.1                  | 896.9    | 45.2               | 0.1                  | 1.3                   | 8.8        | 0.06                  |
| ι   | ıū          | 1.0                  | 1078.5   | 45.0               | 0.3                  | 1.2                   | 8.8        | 0.10                  |
| 1   | $\tau \tau$ | 0.5                  | 912.0    | 41.4               | 0.2                  | 0.6                   | 6.7        | 0.06                  |
| L F | ıμ          | 0.3                  | 882.7    | 40.2               | 0.2                  | 0.4                   | 6.2        | 0.06                  |

DR2 validation with release-00-09-02 :

| component<br>(physics<br>process) | cross-<br>section<br>(nb) | RAW prod<br>CPU time<br>(sec/evt) | l Memory<br>(MB/job) | RAW size<br>(kB/evt)<br>(ROOT) | RAW size<br>(kB/evt)<br>(SROOT) | RAW prod<br>log size<br>(MB) | d mDST prod<br>CPU time<br>(sec/evt) | mDST size<br>(kB/evt) | mDST prod<br>log size<br>(MB) |
|-----------------------------------|---------------------------|-----------------------------------|----------------------|--------------------------------|---------------------------------|------------------------------|--------------------------------------|-----------------------|-------------------------------|
| bb                                | 1.1                       | 1.28                              | 1097                 | 31                             | 86                              | 2.2                          | 0.7                                  | 4.3                   | 1.2                           |
| cc                                | 1.329                     | 1.05                              | 1097                 | 29                             | 83                              | 2.6                          | 0.6                                  | 3.3                   | 1.2                           |
| \$5                               | 0.383                     | 0.98                              | 967                  | 28                             | 81                              | 0.8                          | 0.4                                  | 2.8                   | 1.2                           |
| dd                                | 0.401                     | 1.08                              | 966                  | 28                             | 80                              | 0.8                          | 0.4                                  | 2.8                   | 1.2                           |
| uu                                | 1.605                     | 1.02                              | 1113                 | 28                             | 81                              | 3.1                          | 0.4                                  | 2.8                   | 1.2                           |
| tautau                            | 0.919                     | 0.59                              | 986                  | 25                             | 77                              | 1.8                          | 0.2                                  | 1.5                   | 1.2                           |
| mumu                              | 1.115                     | 0.35                              | 972                  | 23                             | 76                              | 2.2                          | 0.1                                  | 1.0                   | 1.2                           |
| component<br>(physics<br>process) | cross-<br>section<br>(nb) | Nevts                             | CPU<br>(sec)         | Raw size<br>(ROOT, MB)         | Raw size<br>(SROOT, MB)         | CPU<br>(sec)                 | mDST size<br>(MB)                    |                       |                               |
| bb                                | 1.1                       | 11000                             | 14122                | 342                            | 949                             | 7000                         | 40                                   |                       |                               |
| cc                                | 1.329                     | 13290                             | 14008                | 385                            | 1100                            | 6834                         | 43                                   |                       |                               |
| ss                                | 0.383                     | 3830                              | 3731                 | 108                            | 314                             | 1570                         | 11                                   |                       |                               |
| dd                                | 0.401                     | 4010                              | 4291                 | 112                            | 328                             | 1724                         | 11                                   |                       |                               |
| uu                                | 1.605                     | 16050                             | 16389                | 444                            | 1300                            | 6844                         | 43                                   |                       |                               |
| tautau                            | 0.919                     | 9190                              | 5386                 | 226                            | 716                             | 1528                         | 13                                   |                       |                               |
|                                   | 1.115                     | 11490                             | 4040                 | 269                            | 890                             | 1262 11                      |                                      |                       |                               |

Prasanth Krishnan

## Global Cosmic Run (GCR2)

|     |       | nt tim<br>1 RAW |         |         | pres | ence | e of r | aw d | lata for | r thi | s del | ecto |             | rovided<br>7 T.Hara | only wi<br>mag. fi |                                   |
|-----|-------|-----------------|---------|---------|------|------|--------|------|----------|-------|-------|------|-------------|---------------------|--------------------|-----------------------------------|
| RUN | DATE  | Run start       | Run end | Runtime | PXD  | SVD  | CDC    | TOP  | ARICH    | ECL   | KLM   | TRG  | TYPE        | #events             | B field            | Comments                          |
|     | mmidd | hhomm           | hhimm   | hhmm    |      |      |        |      |          |       |       |      |             |                     |                    |                                   |
| 13  | 02/14 | 21:18           | 21:47   | 00:29   | ON   | ON   | ON     | OFF  | OFF      | ON    | ON    | ON   |             | 10603               | 1                  |                                   |
| 25  | 02/14 | 23:29           | 00:03   | 00:34   | ON   | ON   | ON     | ON   | OFF      | ON    | ON    | ON   | trg2        | 12488               | IO ON              |                                   |
| 27  | 02/15 | 00:09           | 01:09   | 01:00   | ON   | ON   | ON     | ON   | OFF      | ON    | ON    | ON   | trg2        | 21853               | 17 ON              |                                   |
| 36  | 02/15 | 02:33           | 03:33   | 01:00   | ON   | ON   | ON     | ON   | OFF      | ON    | ON    | ON   | trg2        | 21929               | 0 ON               |                                   |
| 37  | 02/15 | 03:36           | 04:36   | 01:00   | ON   | ON   | ON     | ON   | OFF      | ON    | ON    | ON   | tog2        | 21751               | 4 ON               |                                   |
| 38  | 02/15 | 04:43           | 05:43   | 01:00   | ON   | ON   | ON     | ON   | OFF      | ON    | ON    | ON   | bg2         | 22633               | 4 ON               |                                   |
| π   | 02/15 | 23:15           | 00:14   | 00:59   | ON   | ON   | ON     | ON   | OFF      | OFF   | OFF   | ON   | 6g2    1Hz  | 27056               | 17 ON              |                                   |
| 78  | 02/16 | 00:18           | 01:19   | 01:01   | ON   | ON   | ON     | ON   | OFF      | OFF   | OFF   | ON   | 6g2    1Hz  | 28268               | 19 ON              |                                   |
| 82  | 02/16 | 01:54           | 02:54   | 01:00   | ON   | ON   | ON     | ON   | OFF      | OFF   | OFF   | ON   | tog2    1Hz | 27853               | 3 ON               |                                   |
| 83  | 02/16 | 02.57           | 03:57   | 01:00   | ON   | ON   | ON     | ON   | OFF      | OFF   | OFF   | ON   | 6g2    1Hz  | 27925               | 6 ON               |                                   |
| 84  | 02/16 | 04:02           | 05:02   | 01:00   | ON   | ON   | ON     | ON   | OFF      | OFF   | OFF   | ON   | 6g2    1Hz  | 27581               | 4 ON               |                                   |
| 85  | 02/16 | 05:04           | 06:06   | 01:02   | ON   | ON   | ON     | ON   | OFF      | OFF   | OFF   | ON   | bg2    1Hz  | 28345               | 1 ON               |                                   |
| 86  | 02/16 | 06:09           | 07:10   | 01:01   | ON   | ON   | ON     | ON   | OFF      | OFF   | OFF   | ON   | tog2    1Hz | 28233               | 2 ON               |                                   |
| 87  | 02/16 | 07:12           | 07:35   | 00:23   | ON   | ON   | ON     | ON   | OFF      | OFF   | OFF   | ON   | 6g2    1Hz  | 10704               | IS ON              |                                   |
| 145 | 02/17 | 00:23           | 00.45   | 00:22   | ON   | ON   | ON     | ON   | OFF      | ON    | ON    | ON   | tog2    1Hz | 10083               | 13 ON 1            | vater leak - CDC HV off for inner |
| 147 | 02/17 | 01:16           | 01:39   | 00:23   | ON   | ON   | ON     | ON   | OFF      | ON    | ON    | ON   | 6g2    1Hz  | 10520               | IS ON I            | valer leak - CDC HV off for inner |
| 157 | 02/17 | 05:42           | 06:41   | 00:59   | ON   | ON   | ON     | ON   | OFF      | ON    | ON    | ON   | 6g2    1Hz  | 27700               | 13 ON 1            | valer leak - CDC HV off for inner |
| 158 | 02/17 | 06:45           | 07:12   | 00:27   | ON   | ON   | ON     | ON   | OFF      | ON    | ON    | ON   | 6g2    1Hz  | 12915               | ié ON III          | valer leak - CDC HV off for inner |

| Database was not ready, so   | ,     |
|------------------------------|-------|
| needed to collect all inform | ation |

|   |                   | Runs               | Time           | Events          |
|---|-------------------|--------------------|----------------|-----------------|
| 1 | Total             | 241                | 218 hour       | 399 Million     |
|   | Good              | 121 [ <b>51%</b> ] | 128 hour [59%] | 35 Million [9%] |
|   | CDC water leak    | 5                  | 3 hour         | 0.8 Million     |
|   | QCS study         | 18                 | 9 hour         | 12.5 Million    |
|   | High trigger test | 101                | 79 hour        | 360 Million     |

| Detector         | Good Runs (total = 121) |
|------------------|-------------------------|
| PXD              | 101 (83%)               |
| SVD              | 95 (79%)                |
| CDC              | 121 (100%)              |
| TOP              | 117 (97%)               |
| ARICH            | 2 (2%)                  |
| ECL              | 110 (91%)               |
| KLM              | 102 (84%)               |
| ALL Except ARICH | 61 (50%)                |

▲□▶ ▲圖▶ ▲ 臣

TIFR, Mumbai

-

## Summary

- Continuum suppression: > 95% background rejection is achieved with 30% signal loss. Still room for improvement
- $\phi_3$  extraction study is going on
- DR3 status is presented; it will be completed in a couple of weeks
- Contribution to GCR2 is also shown

#### Backup-Variable selections

| Variable        | Selection          |
|-----------------|--------------------|
| d0              | 0.5 cm             |
| <i>z</i> 0      | 1.0 cm             |
| $K_S^0$         | 0.450–0.550 GeV    |
| $M_{D^0}$       | 1.85–1.88 GeV      |
| M <sub>bc</sub> | > 5.25 GeV         |
| $ \Delta E $    | $< 0.15 { m ~GeV}$ |

Table: Selection criteria for  $B \to D(K_S^0 \pi \pi)$  decay.

| release | Sample                    | Luminosity/events    |
|---------|---------------------------|----------------------|
| MC9     | Signal MC                 | $2	imes 10^6$ events |
|         | Generic $(q\bar{q})$ BGx0 | $0.2 \ ab^{-1}$      |
|         | (without beam background) |                      |
|         | Generic $(q\bar{q})$ BGx1 | $0.8 \ ab^{-1}$      |
|         | (with beam background)    |                      |
|         | where $q = u, d, s, c$    |                      |

Table: MC release, event type, and luminosity/events.

| Prasanth Krishnan          |  |
|----------------------------|--|
| Getting Ready for Belle II |  |