
Combination of measurements to constrain new physics

K.Trabelsi karim.trabelsi kek.jp 02/12/2016

Introduction

In general, we search for NP indirectly in processes where SM contributions are suppressed, and so, small NP effects can become visible (or even dominant)

Phenomenologically, we can classify potential NP contributions as

- $\circ \Delta F = 2$ (neutral B mixing)
 - 2nd order weak transition in SM, can be enhanced by NP
- $\circ \Delta \mathbf{F} = \mathbf{1} \left(\mathbf{B} \mathbf{decays} \right)$
 - Loop suppression (NP can enter through trees, e.g. FCNC)
 - Helicity suppression (Vector-mediated SM transitions are small compared (pseudo) scalar-mediated NP)

Use few examples (popular global fits) and reflect on the measurements used and how they will evolve

[not mentioning about NP in tree-level decays, see for example M.Tanaka and R.Watanabe, arXiv:1608.05207 and coming B2TiP report

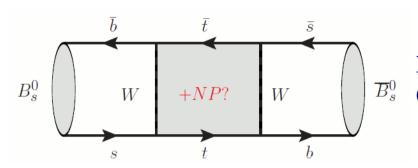
$$R_{D^{(*)}}$$
, $R_{\pi} = \frac{B(B \rightarrow \pi \tau \nu)}{B(B \rightarrow \pi l \nu)}$, $R_{ps} = \frac{B(B \rightarrow \tau \nu)}{B(B \rightarrow \pi l \nu)}$, $R_{pl} = \frac{B(B \rightarrow \tau \nu)}{B(B \rightarrow \mu \nu)}$...

Sensitivity to new physics in B_d , B_s and K mixings

Ref: Z.Ligeti, M.Pappuci, CKMfitter arXiv:1309.2293, arXiv:1501.05013

but also similar studies:

M. Ciuchini et al, hep-ph/0012308


M. Bona et al, hep-ph/051199 [See M.Bona's talk]

[See A.Perez's talk]

J. Laiho et al, arXiv:0910.2928

G.Eigen et al, arXiv:1503.02289

$\Delta F = 2$: New Physics

Evolution of $B^0_{(s)}$ system is described by $H=M-i\Gamma/2$ $\overline{\mathcal{B}}^0_s$ Off-diagonal terms M_{12} , Γ_{12} responsible for oscillations

- \circ M_{12} dominated by (virtual) top boxes [affected by NP, e.g. if heavy new particles in the box]
- \circ Γ_{12} dominated by tree decays into (real) charm states [affected by NP if changes in (constrained) tree-level decays]
- Tree level (4 diff flavours) processes not affected by NP

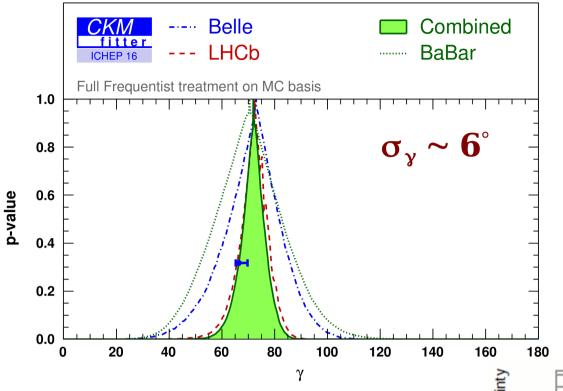
Model-independent parametrisation under the assumption only changes modulus and phase of M_{12}^d and M_{12}^s

$$\begin{aligned} \mathbf{M_{12}^q} &= (\mathbf{M_{12}^q})_{\mathrm{SM}} \times \boldsymbol{\Delta_{\mathbf{q}}} \quad \boldsymbol{\Delta_{\mathbf{q}}} = |\boldsymbol{\Delta_{\mathbf{q}}}| \, \mathbf{e^{i \phi_{\mathbf{q}}^{\boldsymbol{\Delta}}}} = (\mathbf{1} + \mathbf{h_{\mathbf{q}}} \, \mathbf{e^{2i \sigma_{\mathbf{q}}}}) \\ &\text{affects } \Delta m_{\mathbf{q}} \, (\Leftrightarrow |\boldsymbol{\Delta_{\mathbf{q}}}|), \, \mathbf{a_{\mathrm{SL}}^q} \, (\Leftrightarrow \boldsymbol{\Delta_{\mathbf{q}}}), \, \Delta \, \boldsymbol{\Gamma_{\mathbf{q}}} \, \text{and } \boldsymbol{\phi_{\mathrm{B}_{\mathbf{q}}}} \, (\Leftrightarrow \boldsymbol{\phi_{\mathbf{q}}^{\boldsymbol{\Delta}}}) \end{aligned}$$

 Δm_d , Δm_s , β , ϕ_s , a_{SL}^d , a_{SL}^s , $\Delta \Gamma_s$ to constrain Δ_d and Δ_s

$\Delta F = 2$: CKM projections

[CKMfitter, arXiv:1501.05013]


Observables not affected by NP, used to fix CKM:

 $\label{eq:Vud} \left[\left.V_{ud}\right|\text{, }\left|\left.V_{us}\right|\text{, }\left|\left.V_{ub}\right|\text{, }\left|\left.V_{cb}\right|\text{, }\boldsymbol{\gamma}\text{ and }\boldsymbol{\gamma}(\alpha)\equiv\pi-\alpha-\beta\left(\phi_{B_d}\text{ cancels}\right)\right.\right.$

Stage I	Stage II
$7 \text{ fb}^{-1} \text{ LHCb}$	$50~{ m fb^{-1}~LHCb}$
5 ab ⁻¹ Belle II	+ 50 ab ⁻¹ Belle II

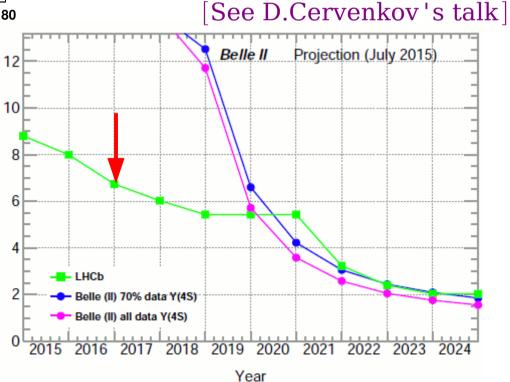
	2013	Stage I		Stage II	
$ V_{ud} $	$0.97425 \pm 0 \pm 0.00022$	id		id	
$ V_{us} $ $(K_{\ell 3})$	$0.2258 \pm 0.0008 \pm 0.0012$	0.22494 ± 0.0006		id	
$ \epsilon_K $	$(2.228 \pm 0.011) \times 10^{-3}$	id		id	
$\Delta m_d \; [\mathrm{ps}^{-1}]$	0.507 ± 0.004	id		id	
$\Delta m_s [\mathrm{ps}^{-1}]$	17.768 ± 0.024	id		id	
$ V_{cb} \times 10^3 \ (b \to c\ell\bar{\nu})$	$41.15 \pm 0.33 \pm 0.59$	42.3 ± 0.4	[17]	42.3 ± 0.3	[17]
$ V_{ub} \times 10^3 \ (b \to u \ell \bar{\nu})$	$3.75 \pm 0.14 \pm 0.26$	3.56 ± 0.10	[17]	3.56 ± 0.08	[17]
$\sin 2\beta$	0.679 ± 0.020	0.679 ± 0.016	17	0.679 ± 0.008	17
$\alpha \pmod{\pi}$	(85.4 ^{+4.0})°	$(91.5 \pm 2)^{\circ}$	[17]	$(91.5 \pm 1)^{\circ}$	[17]
$\gamma \pmod{\pi}$	$(68.0^{+8.0}_{-8.5})^{\circ}$	$(67.1\pm4)^{\circ}$	[17, <u>18]</u>	$(67.1\pm1)^{\circ}$	[<u>17</u> , <u>18</u>]
β_s	$0.0065^{+0.0450}_{-0.0415}$	0.0178 ± 0.012	[18]	0.0178 ± 0.004	[18]
$\mathcal{B}(B \to \tau \nu) \times 10^4$	1.15 ± 0.23	0.83 ± 0.10	[17]	0.83 ± 0.05	[17]
$\mathcal{B}(B \to \mu \nu) \times 10^7$	_	3.7 ± 0.9	[17]	3.7 ± 0.2	[17]
$A_{\rm SL}^d imes 10^4$	23 ± 26	-7 ± 15	[17]	-7 ± 10	[17]
$A_{\mathrm{SL}}^{s} \times 10^{4}$	-22 ± 52	0.3 ± 6.0	[18]	0.3 ± 2.0	[18]

Unlimited y

plethora

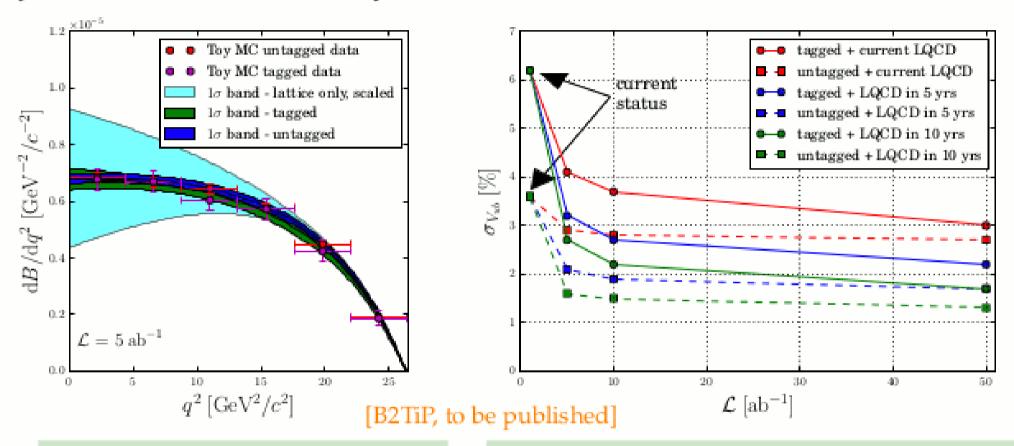
noun [S] • UK 🕠 /ˈpleθ.ər.ə/ US

- /'pleθ.a.ə/ FORMAL
- c2 a very large amount of something, especially a larger amount than you need, want, or can deal with:


There's a plethora of books about the royal family.

The plethora of regulations is both contradictory and confusing.

[§] [deg] Uncertainty Belle II 12 much more modes/ideas

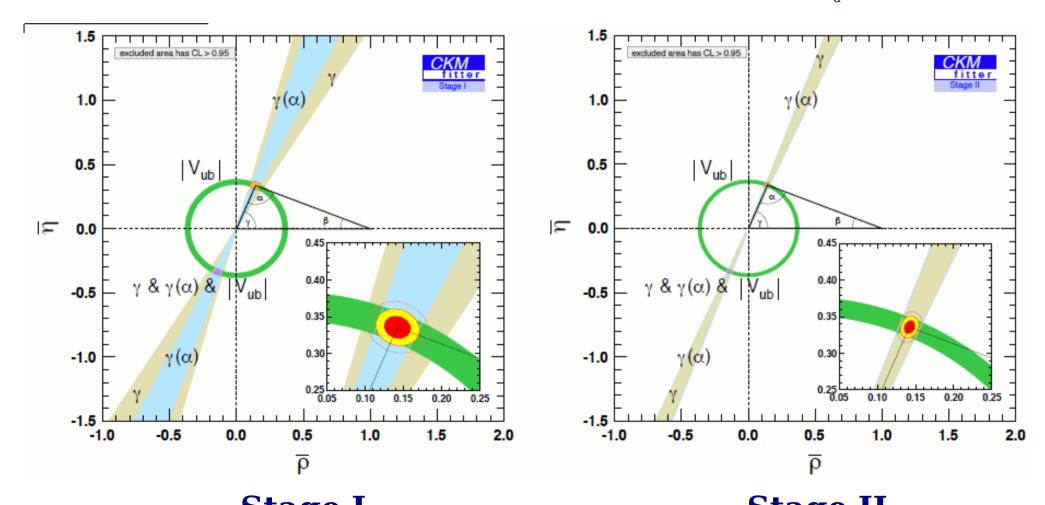

⇒ see WG5's summary

(too) conservative estimate \Rightarrow

V_{ub} | from $B \rightarrow \pi l \nu$ at Belle II [See M.Lubej's talk]

Toy MC studies based on Belle II MC, LQCD forecasts estimated at 5 years (5, 10 ab^{-1}) and 10 years (50 ab^{-1})

 $|V_{ub}|^{\pi\ell\nu}$ from simultaneous fit for $\mathcal{L}=5~\text{ab}^{-1}$, including lattice forecasts and error scaling.


 $\delta_{|V_{ub}|^{\pi\ell\nu}}$ estimates for 5, 10 and 50 ab⁻¹: Tagged: 3.2, 2.7 and 1.7 %

Untagged: 2.1, 1.9 and 1.3 %

LOCD forecasts: [A. Kronfeld, T. Kaneko, S. Simula]

$\Delta F = 2$: CKM projections

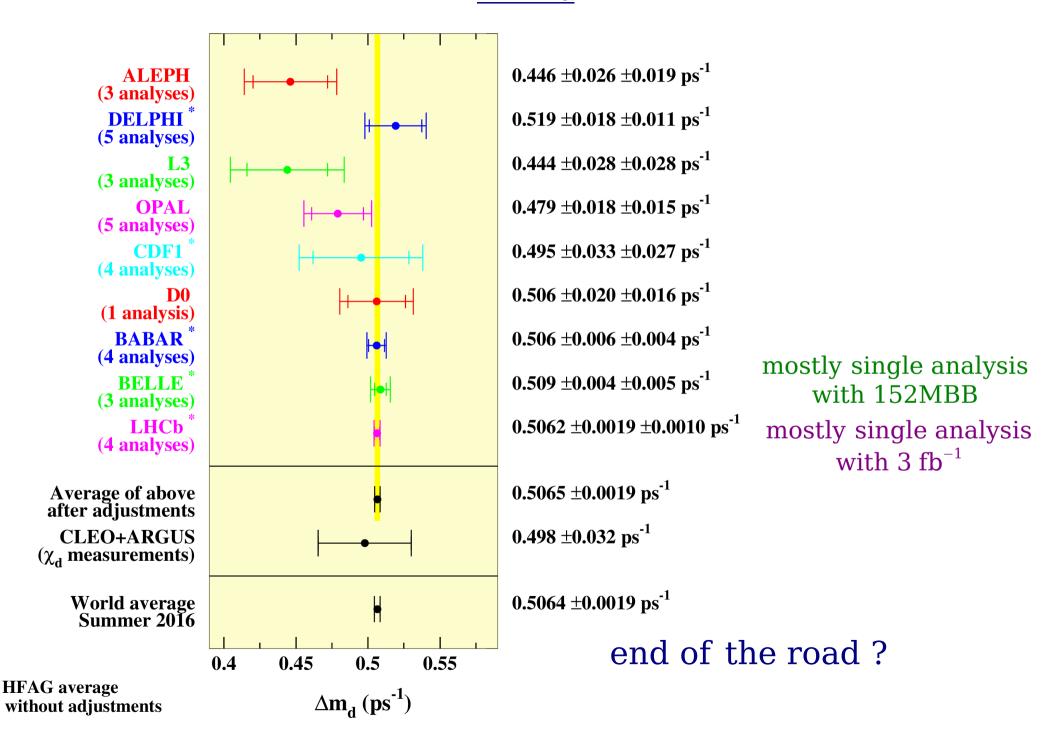
Observables not affected by NP, used to fix CKM: $|V_{ud}|, |V_{us}|, |V_{ub}|, |V_{cb}|, \gamma \text{ and } \gamma(\alpha) \equiv \pi - \alpha - \beta \ (\phi_{B_d} \ cancels)$

Stage I 7 fb $^{-1}$ LHCb + 5 ab $^{-1}$ Belle II

Stage II $50 \text{ fb}^{-1} \text{ LHCb} + 50 \text{ ab}^{-1} \text{ Belle II}$

$\Delta F = 2$: NP fit

[CKMfitter, arXiv:1501.05013]


Stage II

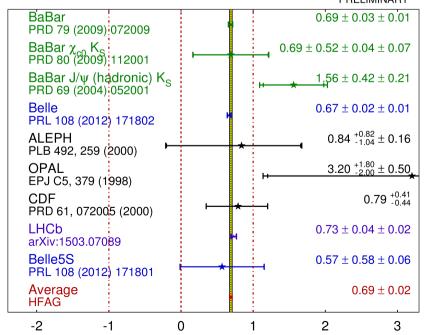
Δm_d , Δm_s , β , ϕ_s , a_{SL}^d , a_{SL}^s , $\Delta \Gamma_s$ to constrain Δ_d and Δ_s

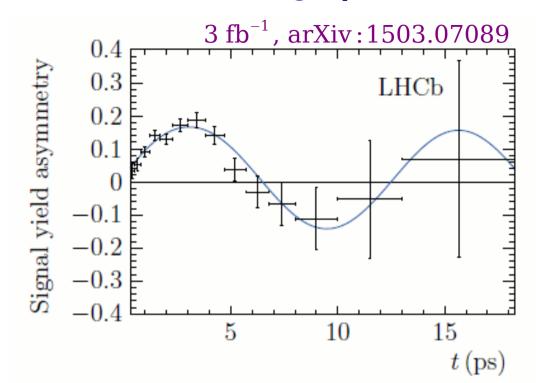
Stage I

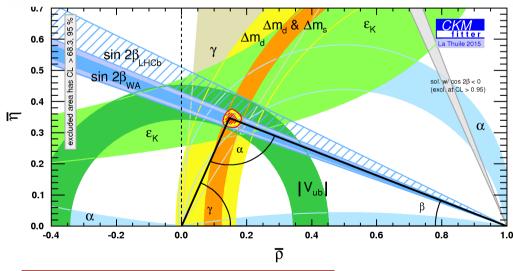
		7 fb ⁻¹ LHCb + 5 ab ⁻¹ Belle II		50 fb ⁻¹ LHCb + 50 ab ⁻¹ Belle	
	2013	Stage I		Stage II	
$ V_{ud} $	$0.97425 \pm 0 \pm 0.00022$	id		id	
$ V_{us} $ $(K_{\ell 3})$	$0.2258 \pm 0.0008 \pm 0.0012$	0.22494 ± 0.0006		id	
$ \epsilon_K $	$(2.228 \pm 0.011) \times 10^{-3}$	id		id	
$\Delta m_d [\mathrm{ps}^{-1}]$	0.507 ± 0.004	id		id	
$\Delta m_s ~ [\mathrm{ps}^{-1}]$	17.768 ± 0.024	id		id	
$ V_{cb} \times 10^3 \ (b \to c\ell\bar{\nu})$	$41.15 \pm 0.33 \pm 0.59$	42.3 ± 0.4	[17]	42.3 ± 0.3	[17]
$ V_{ub} \times 10^3 \ (b \to u \ell \bar{\nu})$	$3.75 \pm 0.14 \pm 0.26$	3.56 ± 0.10	[17]	3.56 ± 0.08	[17]
$\sin 2\beta$	0.679 ± 0.020	0.679 ± 0.016	[17]	0.679 ± 0.008	[17]
$\alpha \pmod{\pi}$	(85.4 ^{+4.0} _{-3.8})°	(91.5 ± 2)	17	$(91.5 \pm 1)^{\circ}$	17
$\gamma \pmod{\pi}$	$(68.0^{+8.0}_{-8.5})^{\circ}$	$(67.1 \pm 4)^{\circ}$	[17, 18]	$(67.1 \pm 1)^{\circ}$	[<u>17</u> , <u>18</u>]
eta_s	$0.0065^{+0.0450}_{-0.0415}$	0.0178 ± 0.012	[18]	0.0178 ± 0.004	[18]
$\mathcal{B}(B \to \tau \nu) \times 10^4$	1.15 ± 0.23	0.83 ± 0.10	17	0.83 ± 0.05	17
$\mathcal{B}(B \to \mu \nu) \times 10^7$	_	3.7 ± 0.9	[17]	3.7 ± 0.2	[17]
$A_{\rm SL}^d \times 10^4$	23 ± 26	-7 ± 15	[17]	-7 ± 10	[17]
$A_{\rm SL}^s imes 10^4$	-22 ± 52	0.3 ± 6.0	[18]	0.3 ± 2.0	[18]

Δm_d

Mixing-induced CP violation in B → $J/\psi K^0$


$$A(t) = \frac{\Gamma(\overline{B}) - \Gamma(B)}{\Gamma(\overline{B}) + \Gamma(B)} \qquad \begin{array}{c} S = \sin 2\beta \\ C = 0 \end{array}$$


$$A(t) = S \sin(\Delta m_d t) - C \cos(\Delta m_d t)$$


$$S = 0.731 \pm 0.035 \pm 0.020$$

 $C = -0.038 \pm 0.032 \pm 0.005$

Belle: $0.67 \pm 0.02 \pm 0.01$ BaBar: $0.69 \pm 0.03 \pm 0.01$

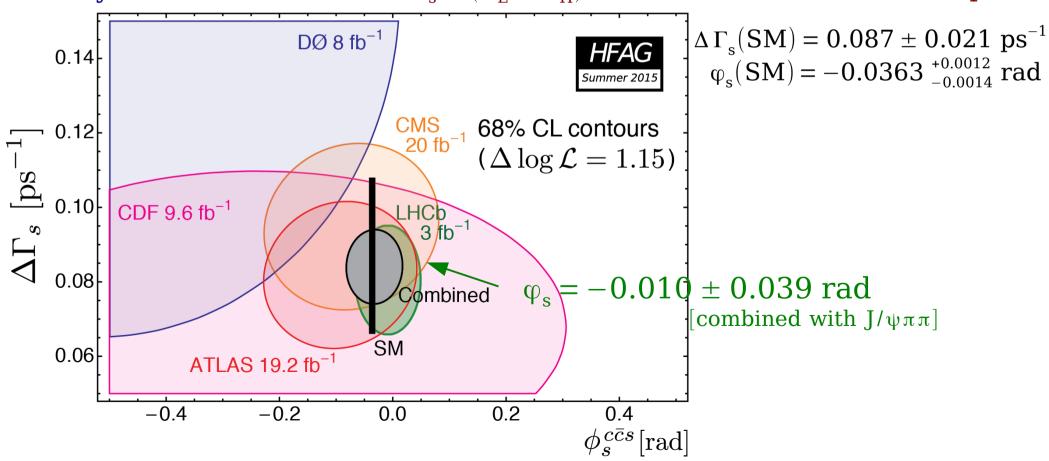
$$\sin(2\beta) \equiv \sin(2\phi_1)$$
 HFAG Moriond 2015 DDELIMINARY

$$\beta = (21.9 \pm 0.7)^{\circ}$$

WA 2015

Mixing-induced CP violation in $B_s \rightarrow J/\psi K K$

CP violating phase


[See G.Cowan's talk] [3 fb⁻¹, arXiv:1411.3104]

$$\phi_s = -0.058 \pm 0.049 \pm 0.006$$

CP violating in mixing or direct decay (no CPV: $|\lambda|=1$)

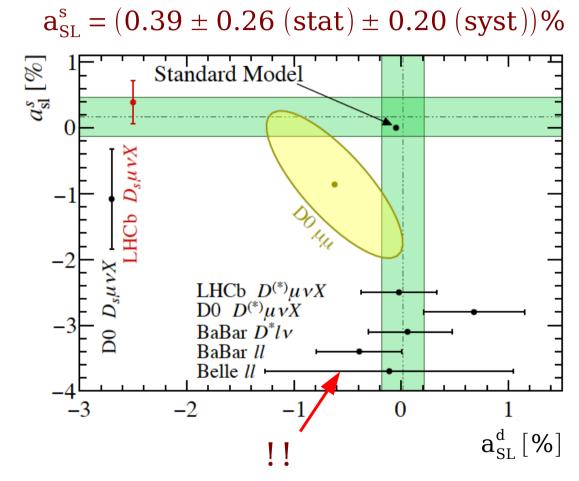
$$|\lambda| = 0.964 \pm 0.019 \pm 0.007$$

Decay width difference $\Delta \Gamma_s = (\Gamma_L - \Gamma_H) = 0.0805 \pm 0.0091 \pm 0.0032 \text{ ps}^{-1}$

Semileptonic asymmetries

use semileptonic $B_{(s)}^0$ decays

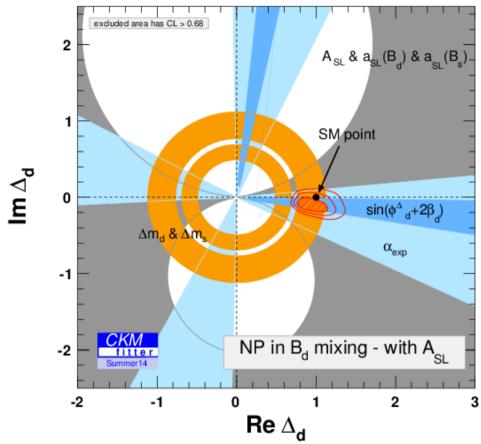
[Phys.Rev.Lett.117(2016)061803]


$$\mathbf{A}_{\mathrm{CP}} \equiv \mathbf{a}_{\mathrm{SL}} = \frac{\Gamma(\overline{\mathbf{B}} \to \mathbf{B} \to \mathbf{f}) - \Gamma(\mathbf{B} \to \overline{\mathbf{B}} \to \overline{\mathbf{f}})}{\Gamma(\overline{\mathbf{B}} \to \mathbf{B} \to \mathbf{f}) + \Gamma(\mathbf{B} \to \overline{\mathbf{B}} \to \overline{\mathbf{f}})} \quad \mathbf{S}$$

$$A_{meas}(t) = \frac{a_{SL}}{2} \left(1 - \frac{\cos(\Delta m t)}{\cosh(\Delta \Gamma t/2)} \right)$$

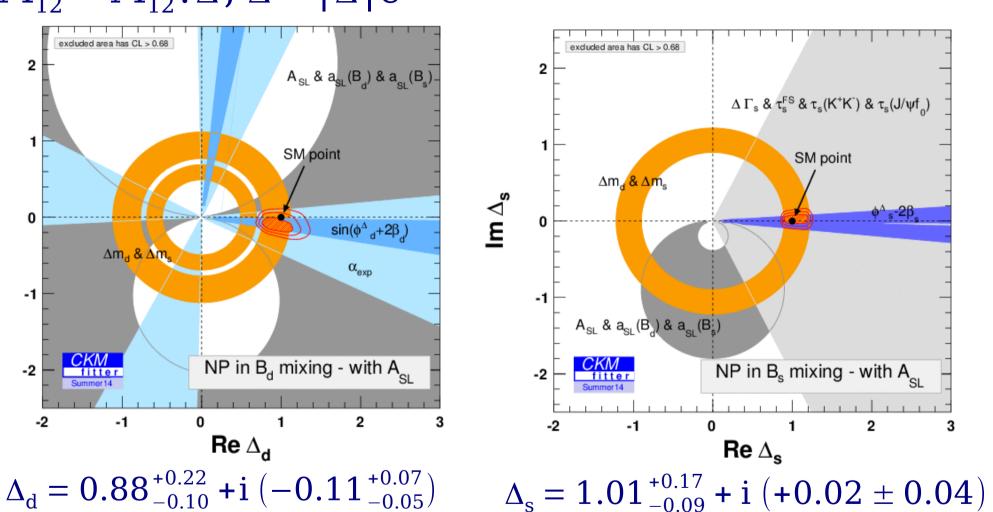
Standard Model predictions

[A.Lenz, arXiv:1205.1444]


$$a_{\rm SL}^{d} = (-4.1 \pm 0.6) \times 10^{-4}$$

 $a_{\rm SL}^{s} = (+1.9 \pm 0.3) \times 10^{-5}$

- \circ **No tagging needed.** Time-dependent (B^0) or time-independent (B^0_s) SL asymmetry measurement
- 3σ tension coming from D0 dimuon asymmetry measurement


$\Delta F = 2$: Current constraints

$$\mathbf{M}_{12} = \mathbf{M}_{12}$$
. Δ , $\Delta = |\Delta| \mathbf{e}^{i \varphi^{\Delta}}$

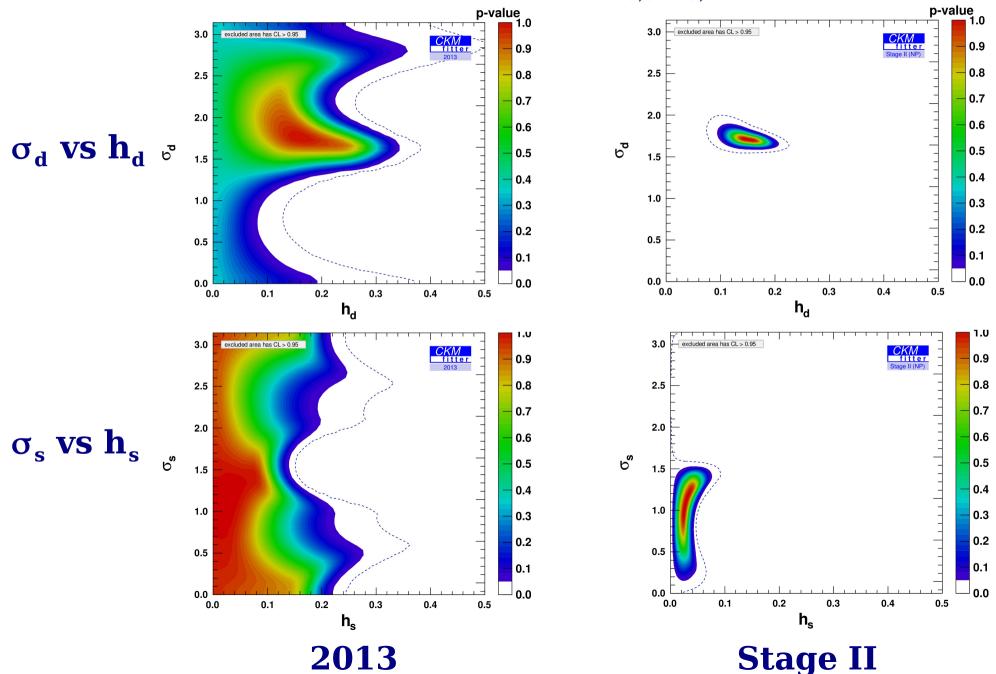
$$\Delta_{\rm d} = 0.88^{+0.22}_{-0.10} + i \left(-0.11^{+0.07}_{-0.05}\right)$$

[CKMfitter, arXiv:1501.05013]

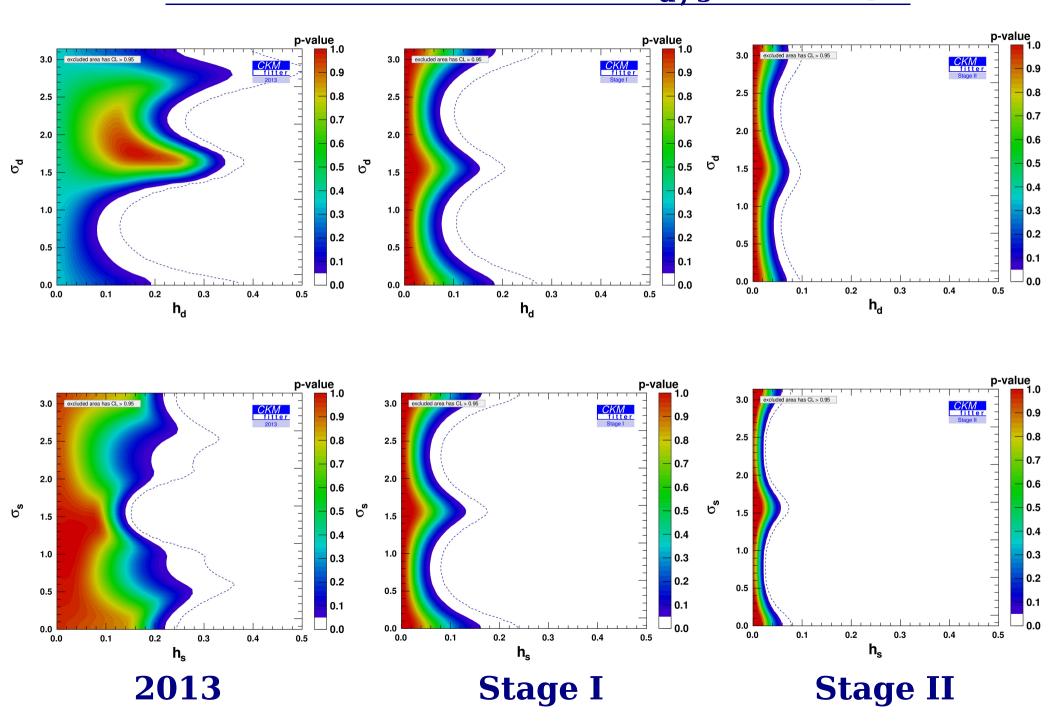
Bounds/prospects for New Physics at:

- Stage I: 7 fb⁻¹ LHCb + 5 ab⁻¹ Belle II
- Stage II: 50 fb⁻¹ LHCb + 50 ab⁻¹ Belle II

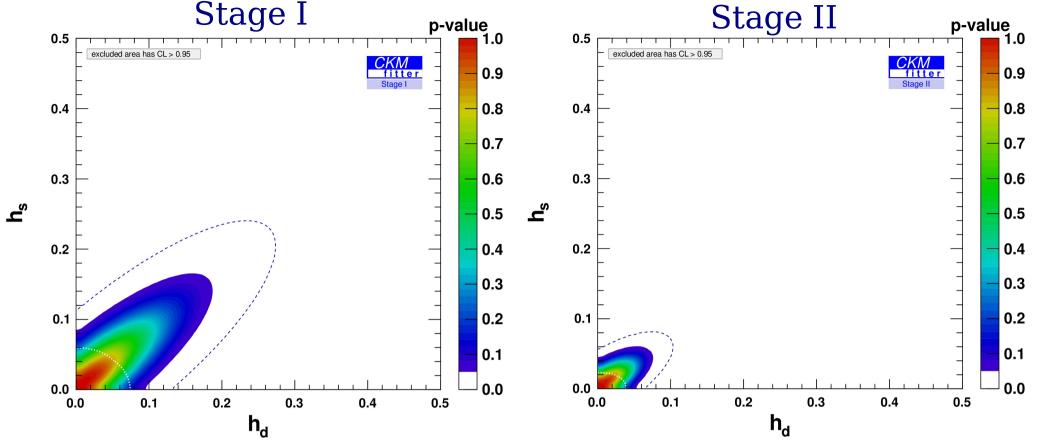
$\Delta F = 2$: Inputs


[CKMfitter, arXiv:1501.05013]

			CKIVIIICCEI	, al XIV: 1301.03013
	2003	2013	Stage I	Stage II
$ V_{ud} $	0.9738 ± 0.0004	$0.97425 \pm 0 \pm 0.00022$	id	id
$ V_{us} $ $(K_{\ell 3})$	$0.2228 \pm 0.0039 \pm 0.0018$	$0.2258 \pm 0.0008 \pm 0.0012$	0.22494 ± 0.0006	id
$ \epsilon_K $	$(2.282 \pm 0.017) \times 10^{-3}$	$(2.228 \pm 0.011) \times 10^{-3}$	id	id
$\Delta m_d [\mathrm{ps}^{-1}]$	0.502 ± 0.006	0.507 ± 0.004	id	id
$\Delta m_s [\mathrm{ps}^{-1}]$	> 14.5 [95% CL]	17.768 ± 0.024	id	id
$ V_{cb} \times 10^3 \ (b \to c\ell\bar{\nu})$	$41.6 \pm 0.58 \pm 0.8$	$41.15 \pm 0.33 \pm 0.59$	42.3 ± 0.4	[17] 42.3 ± 0.3 [17]
$ V_{ub} \times 10^3 \ (b \to u \ell \bar{\nu})$	$3.90 \pm 0.08 \pm 0.68$	$3.75 \pm 0.14 \pm 0.26$	3.56 ± 0.10	[17] 3.56 ± 0.08 [17]
$\sin 2\beta$	0.726 ± 0.037	0.679 ± 0.020	0.679 ± 0.016	[17] 0.679 ± 0.008 [17]
$\alpha \pmod{\pi}$	_	$(85.4^{+4.0}_{-3.8})^{\circ}$	$(91.5 \pm 2)^{\circ}$	$[17]$ $(91.5 \pm 1)^{\circ}$ $[17]$
$\gamma \pmod{\pi}$	_	$(68.0^{+8.0}_{-8.5})^{\circ}$	$(67.1 \pm 4)^{\circ}$	$[17, 18]$ $(67.1 \pm 1)^{\circ}$ $[17, 18]$
eta_s	_	$0.0065^{+0.0450}_{-0.0415}$	0.0178 ± 0.012	$[18]$ 0.0178 \pm 0.004 $[18]$
$\mathcal{B}(B \to \tau \nu) \times 10^4$	_	1.15 ± 0.23	0.83 ± 0.10	[17] 0.83 ± 0.05 [17]
$\mathcal{B}(B \to \mu \nu) \times 10^7$	_	_	3.7 ± 0.9	[17] 3.7 ± 0.2 [17]
$A_{\rm SL}^d \times 10^4$	10 ± 140	23 ± 26	-7 ± 15	[17] -7 ± 10 [17]
$A_{\rm SL}^s \times 10^4$	_	-22 ± 52	0.3 ± 6.0	[18] 0.3 ± 2.0 [18]
\bar{m}_c	$1.2 \pm 0 \pm 0.2$	$1.286 \pm 0.013 \pm 0.040$	1.286 ± 0.020	1.286 ± 0.010
$ar{m}_{t}$	167.0 ± 5.0	$165.8 \pm 0.54 \pm 0.72$	id	id
$lpha_s(m_Z)$	$0.1172 \pm 0 \pm 0.0020$	$0.1184 \pm 0 \pm 0.0007$	id	id
B_K	$0.86 \pm 0.06 \pm 0.14$	$0.7615 \pm 0.0026 \pm 0.0137$	0.774 ± 0.007	$[19, 20]$ 0.774 ± 0.004 $[19, 20]$
f_{B_s} [GeV]	$0.217 \pm 0.012 \pm 0.011$	$0.2256 \pm 0.0012 \pm 0.0054$	0.232 ± 0.002	$[19, 20]$ 0.232 ± 0.001 $[19, 20]$
B_{B_S}	1.37 ± 0.14	$1.326 \pm 0.016 \pm 0.040$	1.214 ± 0.060	$[19, 20]$ 1.214 ± 0.010 $[19, 20]$
f_{B_S}/f_{B_d}	$1.21 \pm 0.05 \pm 0.01$	$1.198 \pm 0.008 \pm 0.025$	1.205 ± 0.010	$[19, 20]$ 1.205 ± 0.005 $[19, 20]$
B_{B_s}/B_{B_d}	1.00 ± 0.02	$1.036 \pm 0.013 \pm 0.023$	1.055 ± 0.010	$[19, 20]$ 1.055 ± 0.005 $[19, 20]$
$\tilde{B}_{B_S}/\tilde{B}_{B_d}$	_	$1.01 \pm 0 \pm 0.03$	1.03 ± 0.02	id
\tilde{B}_{B_S}	_	$0.91 \pm 0.03 \pm 0.12$	0.87 ± 0.06	id


NB: No D0 A_{SL} input

$\Delta F = 2: NP!!$ ideal scenario...

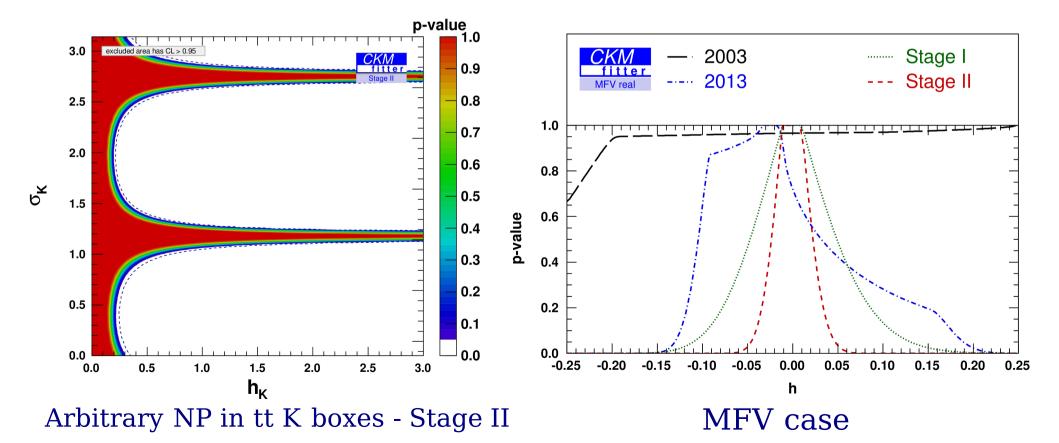

Hypothetical Stage II fits for NP, assuming that all future experimental results correspond to the current best-fit values of $\bar{\rho}$, $\bar{\eta}$, $h_{d.s}$, $\sigma_{d.s}$

$\Delta F = 2$: bounds for $B_{d,s}$ mixings

$\Delta F = 2$: bounds on energy scale

NP contribution to the mixing

$$\begin{split} & from \ \frac{C_{ij}^2}{\Lambda^2} \left(\overline{b}_L \gamma^\mu q_{j,L}\right)^2 \\ & h \simeq 1.5 \frac{|C_{ij}|^2}{|V_{ti}V_{tj}|^2} \frac{(4\pi)^2}{G_F \Lambda^2} \simeq \frac{|C_{ij}|^2}{|V_{ti}V_{tj}|^2} (\frac{4.5 \ TeV}{\Lambda})^2 \end{split}$$


Couplings		•	ΓeV) probed by
Coupings	order	B_d mixing	B_s mixing
$ C_{ij} = V_{ti}V_{tj}^* $	tree level	17	19
(CKM-like)	one loop	1.4	1.5
$ C_{ij} = 1$	tree level	2×10^3	5×10^2
(no hierarchy)	one loop	2×10^2	40

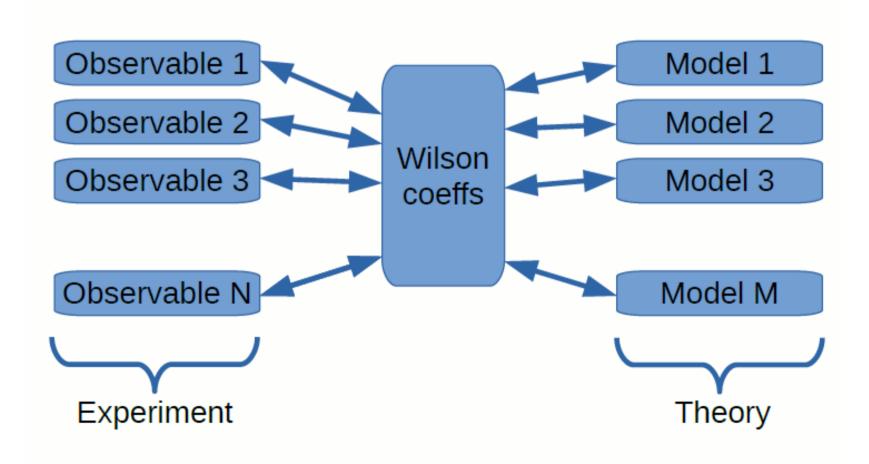
probe new particles with CKM-like couplings with masses, M, in the 10-20 TeV range if contribute at tree level $(\Lambda \sim M)$, in 1-2 TeV range if enter with a loop suppression $(\Lambda \sim 4\pi M)$

NP in K mixing, $\Delta F = 2$: ϵ_K

- \circ K, B_d and B_s mixings in general not related
- \circ ε_K not enough to bound NP in K mixing, even if NP only in tt box
- but in the case of MFV, possible to exploit all neutral mesons

$$h = h_{\text{d}} \ e^{2 \text{i} \sigma_{\text{d}}} = h_{\text{s}} \ e^{2 \text{i} \sigma_{\text{s}}} = h_{\text{K}} \ e^{2 \text{i} \sigma_{\text{K}}} \ \text{with} \ \sigma_{\text{i}} = 0 \ (\text{mod} \ \pi/2)$$

Sensitivity to new physics in rare B decays


References:

M.Ciuchini et al, arXiv:1512.07157

T.Hurth et al, arXiv:1603.00865

S.Descotes-Genon et al, arXiv:1510.04239

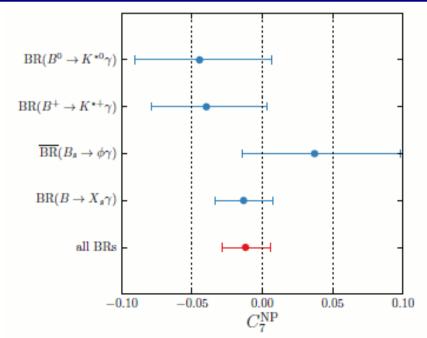
• • •

Effective field theory

Model-independent description in effective field theory

$$\mathcal{H}_{\mathrm{eff}} = -\frac{4G_F}{\sqrt{2}}V_{\mathrm{tb}}V_{\mathrm{ts}}^* \sum_i \underline{\mathcal{C}_i \mathcal{O}_i} + \underline{\mathcal{C}_i' \mathcal{O}_i'}$$

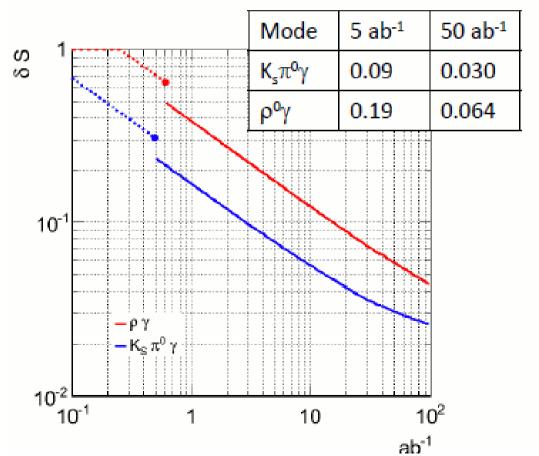
Left-handed Right-handed, $\frac{m_s}{m_b}$ suppressed

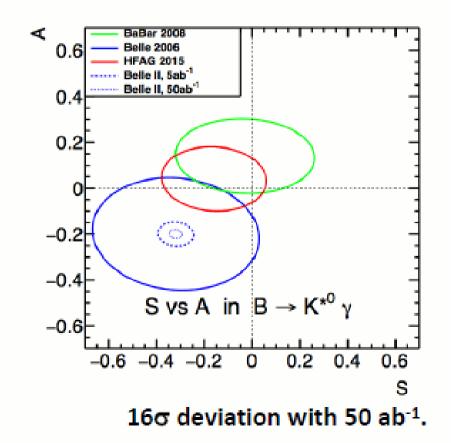

■ Wilson coefficients $C_i^{(\prime)}$ encode short-distance physics, $\mathcal{O}_i^{(\prime)}$ corr. operators

NP changes short-distance C_i and/or add new long-distance ops O'_i

A.Paul, D.Straub, arXiv:1608.02556

Observable	SM prediction		Measurement	
$10^4 \times BR(B \rightarrow X_s \gamma)_{E_{\gamma} > 1.6 GeV}$	3.36 ± 0.23	[16]	3.43 ± 0.22	[19]
$10^5 \times \mathrm{BR}(B^+ \to K^* \gamma)$	3.43 ± 0.84		4.21 ± 0.18	[19]
$10^5 \times BR(B^0 \rightarrow K^* \gamma)$	3.48 ± 0.81		4.33 ± 0.15	[19]
$10^5 \times \overline{BR}(B_s \to \phi \gamma)$	4.31 ± 0.86		3.5 ± 0.4	[43, 44]
$S(B^0 \to K^*\gamma)$	-0.023 ± 0.015		-0.16 ± 0.22	[19]
$A_{\rm CP}(B^0 \to K^* \gamma)$	0.003 ± 0.001		-0.002 ± 0.015	[19]
$A_{\Delta\Gamma}(B_s \rightarrow \phi \gamma)$	0.031 ± 0.021		-1.0 ± 0.5	[4]
$\langle P_1 \rangle (B^0 \to K^* e^+ e^-)_{[0.002,1.12]}$	0.04 ± 0.02		-0.23 ± 0.24	[45]
$\langle A_T^{ m Im} \rangle (B^0 o K^* e^+ e^-)_{[0.002, 1.12]}$	0.0003 ± 0.0002		0.14 ± 0.23	[45]


A.Paul, D.Straub, arXiv:1608.02556


Observable	SM prediction		Measurement	
$10^4 \times BR(B \rightarrow X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}$	3.36 ± 0.23	[16]	3.43 ± 0.22	[19]
$10^5 \times { m BR}(B^+ o K^* \gamma)$	3.43 ± 0.84		4.21 ± 0.18	[19]
$10^5 \times BR(B^0 \rightarrow K^*\gamma)$	3.48 ± 0.81		4.33 ± 0.15	[19]
$10^5 \times \overline{BR}(B_s \to \phi \gamma)$	4.31 ± 0.86		3.5 ± 0.4	[43, 44]
$S(B^0 \to K^* \gamma)$	-0.023 ± 0.015		-0.16 ± 0.22	[19]
$A_{CP}(B^0 \rightarrow K^*\gamma)$	0.003 ± 0.001		-0.002 ± 0.015	[19]
$A_{\Delta\Gamma}(B_s \rightarrow \phi \gamma)$	0.031 ± 0.021		-1.0 ± 0.5	[4]
$\langle P_1 \rangle (B^0 \to K^* e^+ e^-)_{[0.002,1.12]}$	0.04 ± 0.02		-0.23 ± 0.24	[45]
$\langle A_T^{\rm Im} \rangle (B^0 \to K^* e^+ e^-)_{[0.002,1.12]}$	0.0003 ± 0.0002		0.14 ± 0.23	[45]

[See talk of S.Sandilya]

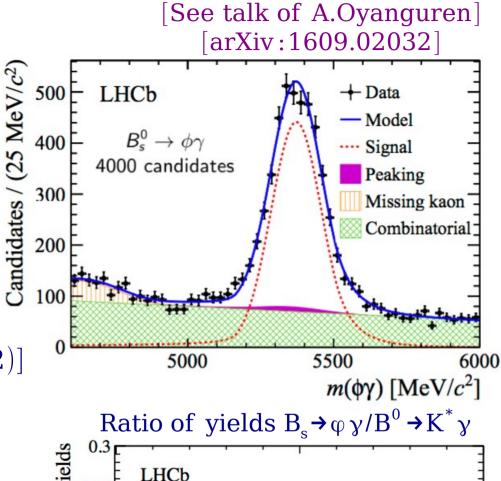
At Belle II, significant improvement in the determination of $A_{CP}(t)$ in $K^0_S\pi^0\gamma$ expected.

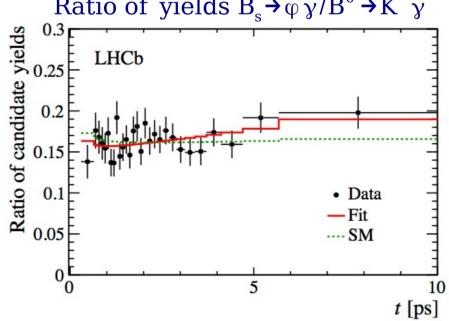
- Belle II vertex larger than Belle $(6 \rightarrow 11.5 \text{cm})$
- $\circ~30\,\%$ more $K_{_S}$ with vertex hits available
- Effective tagging eff. 13% better
- Expected errors for S measurements of K_sπ⁰γ and ρ⁰γ.

A.Paul, D.Straub, arXiv:1608.02556

Observable	SM prediction		Measurement	
$10^4 \times BR(B \rightarrow X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}$	3.36 ± 0.23	[16]	3.43 ± 0.22	[19]
$10^5 \times \text{BR}(B^+ \to K^* \gamma)$	3.43 ± 0.84		4.21 ± 0.18	[19]
$10^5 \times BR(B^0 \rightarrow K^*\gamma)$	3.48 ± 0.81		4.33 ± 0.15	[19]
$10^5 \times \overline{BR}(B_s \to \phi \gamma)$	4.31 ± 0.86		3.5 ± 0.4	[43, 44]
$S(B^0 \to K^*\gamma)$	-0.023 ± 0.015		-0.16 ± 0.22	[19]
$A_{CD}(B^0 \to K^*\gamma)$	0.003 ± 0.001		-0.002 ± 0.015	[19]
$A_{\Delta\Gamma}(B_s \to \phi \gamma)$	0.031 ± 0.021		-1.0 ± 0.5	[4]
$(P_1)(B^0 \to K^*e^+e^-)_{[0.002,1.12]}$	0.04 ± 0.02		-0.23 ± 0.24	[45]
$(A_T^{\text{Im}})(B^0 \to K^*e^+e^-)_{[0.002,1.12]}$	0.0003 ± 0.0002		0.14 ± 0.23	[45]

$$\Gamma_{B_s \boldsymbol{\rightarrow} \gamma}(t) \propto \left[\cosh(\Delta \Gamma_s t/2) - \boldsymbol{A^{\Delta}} \sinh(\Delta \Gamma_s t/2) \right]$$

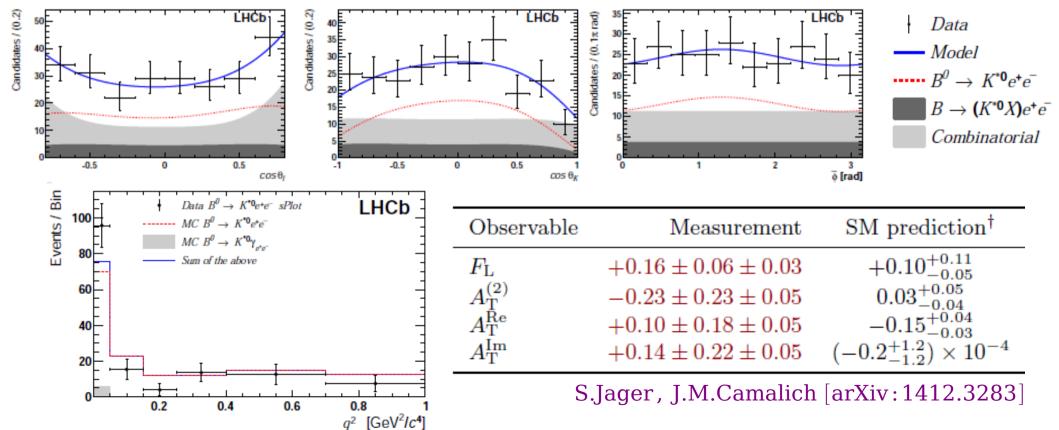

$$\mathbf{A}^{\Delta} \simeq \sin 2 \, \psi \cos \phi_{s} \qquad \tan \psi \equiv \frac{\mathbf{A}(\mathbf{B}_{s}^{0} \rightarrow \phi \, \gamma_{R})}{\mathbf{A}(\overline{\mathbf{B}}_{s}^{0} \rightarrow \phi \, \gamma_{L})}$$

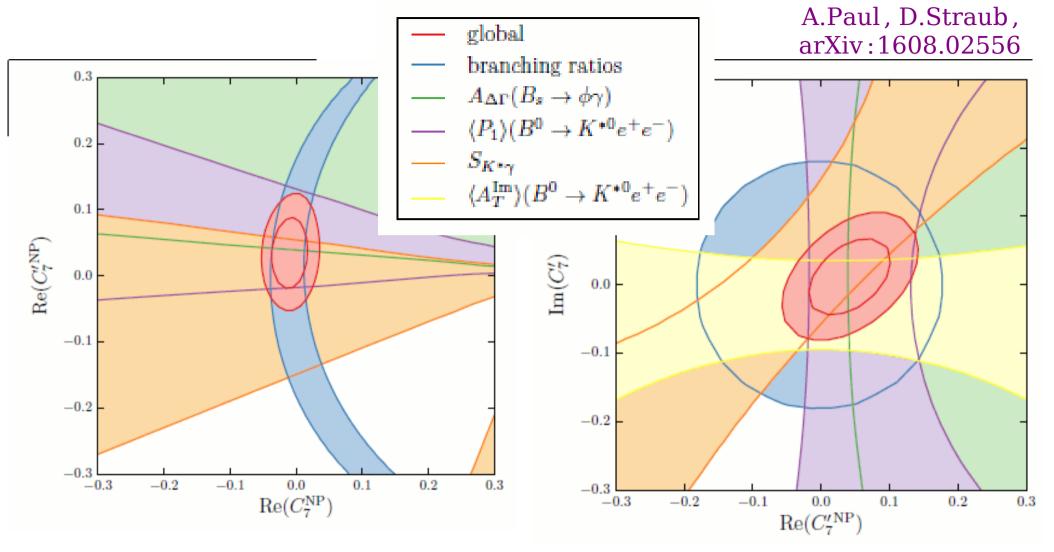

∘ Control acceptance by using $B^0 \to K^{*0} \gamma$ decays

$$\mathbf{A}^{\Delta} = (-0.98^{+0.46}_{-0.52}^{+0.46}_{-0.20})$$

to be compared with

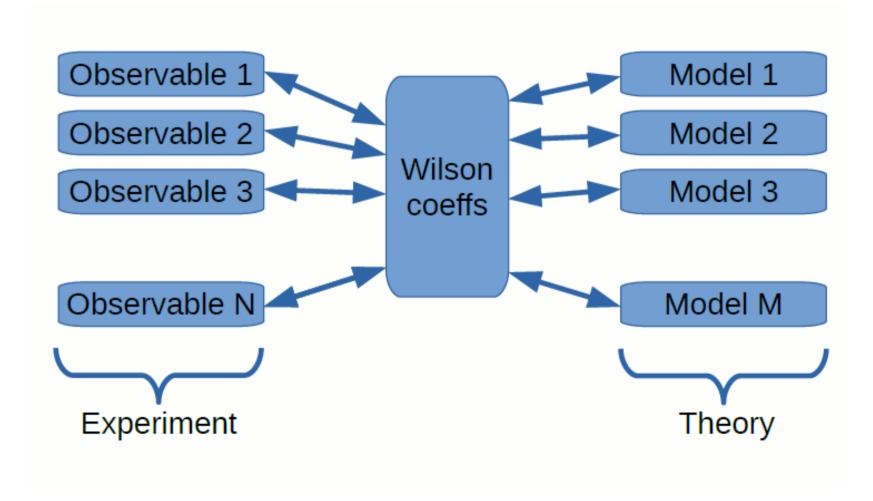
$$A_{\rm SM}^{\Delta} = 0.047^{+0.029}_{-0.025}$$




A.Paul, D.Straub, arXiv:1608.02556

Observable	SM prediction		Measurement	
$10^4 \times BR(B \rightarrow X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}$	3.36 ± 0.23	[16]	3.43 ± 0.22	[19]
$10^5 \times BR(B^+ \to K^* \gamma)$	3.43 ± 0.84		4.21 ± 0.18	[19]
$10^5 \times BR(B^0 \rightarrow K^*\gamma)$	3.48 ± 0.81		4.33 ± 0.15	[19]
$10^5 \times \overline{BR}(B_s \to \phi \gamma)$	4.31 ± 0.86		3.5 ± 0.4	[43, 44]
$S(B^0 \to K^*\gamma)$	-0.023 ± 0.015		-0.16 ± 0.22	[19]
$A_{CP}(B^0 \rightarrow K^*\gamma)$	0.003 ± 0.001		-0.002 ± 0.015	[19]
$A_{\Lambda\Gamma}(B_s \rightarrow \phi \gamma)$	0.031 ± 0.021		-1.0 ± 0.5	[4]
$(P_1)(B^0 \to K^*e^+e^-)_{[0.002,1.12]}$	0.04 ± 0.02		-0.23 ± 0.24	[45]
$(A_T^{Im})(B^0 \to K^*e^+e^-)_{[0.002,1.12]}$	0.0003 ± 0.0002		0.14 ± 0.23	[45]

[LHCb, arXiv:1501.03038] see F.Polci's talk


∘ Angular analysis of $B_d^0 \rightarrow K^* e^+ e^-$ at very low q^2 (∈ [0.002, 1.120] GeV²)

- \circ inclusive and exclusive branching ratios strongly constrain NP contributions to the real part of C_7
- ∘ more precise measurement of time-dependent CP asymmetry in $B \rightarrow K^* \gamma$
- ∘ improved measurements of the $B \rightarrow K^* e^+ e^-$ angular analysis at very low q^2
- measurements of radiative baryonic decays $\Lambda_b \rightarrow \Lambda^{(*)} \gamma$

Global fits including also b→s l⁺l⁻ (many more observables)

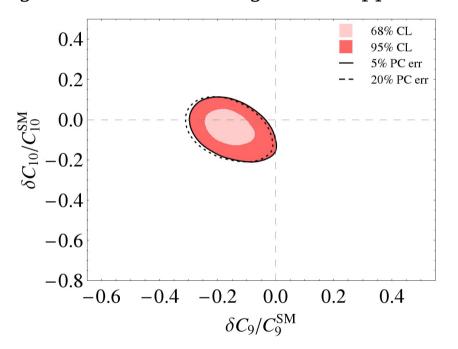
Global fits of the observables by minimization of

$$\chi^2 = (\vec{O}^{th} - \vec{O}^{exp}).(\Sigma_{th} + \Sigma_{exp})^{-1}.(\vec{O}^{th} - \vec{O}^{exp})$$

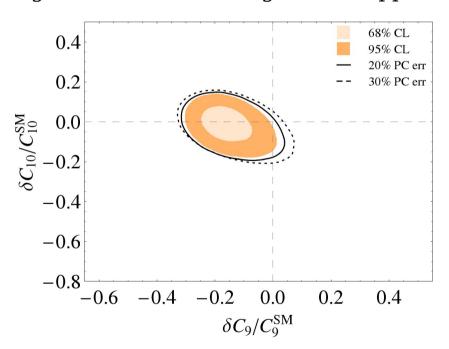
 $(\Sigma_{\rm th} + \Sigma_{\rm exp})^{-1}$ is the inverse covariance matrix

More than 100 observables relevant for leptonic and semileptonic decays:

- BR($B \to X_s \gamma$)
- BR($B \to X_d \gamma$)
- $\Delta_0(B \to K^* \gamma)$
- BR^{low} $(B \rightarrow X_s \mu^+ \mu^-)$
- BR^{high} $(B \to X_s \mu^+ \mu^-)$
- BR^{low} $(B \rightarrow X_s e^+ e^-)$
- BR^{high} $(B \rightarrow X_s e^+ e^-)$
- BR($B_s \rightarrow \mu^+ \mu^-$)
- BR($B_d \rightarrow \mu^+ \mu^-$)
- BR($B \rightarrow K^{*+}\mu^+\mu^-$)


- BR($B \rightarrow K^0 \mu^+ \mu^-$)
- BR($B \rightarrow K^+ \mu^+ \mu^-$)
- BR($B \rightarrow K^*e^+e^-$)
- R_K
- $B \to K^{*0} \mu^+ \mu^-$: BR, F_L , A_{FB} , S_3 , S_4 , S_5 , S_7 , S_8 , S_9 in 8 low q^2 and 4 high q^2 bins
- $B_s \rightarrow \phi \mu^+ \mu^-$: BR, F_L , , S_3 , S_4 , S_7 in 3 low q^2 and 2 high q^2 bins

calculations done using SuperIso program


NP manifests itself in the shifts of the individual coefficients with respect to the SM values: $C_i(\mu) = C_i^{SM}(\mu) + \delta C_i$

Assuming NP to appear in two operators:

global fit results using full FF approach

global fit results using soft FF approach

"Latest Belle measurement of branching ratio is based on less than 30% of the total luminosity" Belle hep-ex/0503044

$$\Rightarrow B(Xs\mu\mu)_{high\ q^2}, B(Xs\mu\mu)_{low\ q^2}, \\ B(Xsee)_{high\ q^2}, B(Xsee)_{low\ q^2}$$

[Belle, sum-of-exclusive, full stat]
[PRD 93 (2016) 032008]

1.0

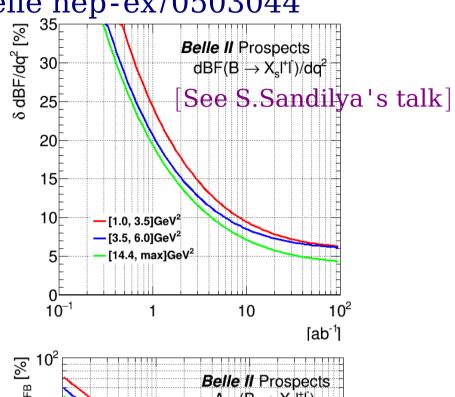
0.5

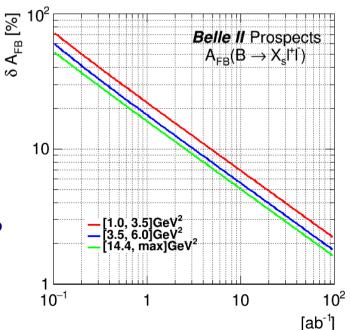
-0.5

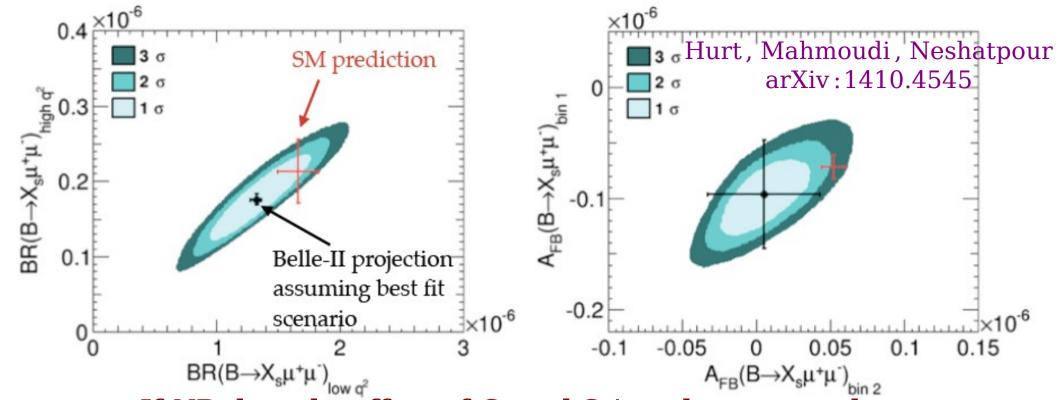
-1.0

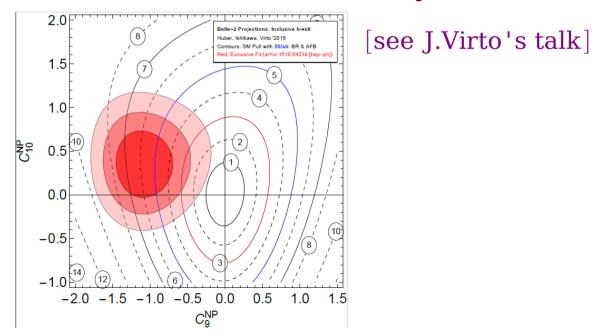
5

10


15


20


 $q^2 [GeV^2/c^2]$


∘ B \rightarrow X_sll at LHCb?

If NP then the effect of C₉ and C₉' are large enough to be checked at Belle II with theoretically clean modes

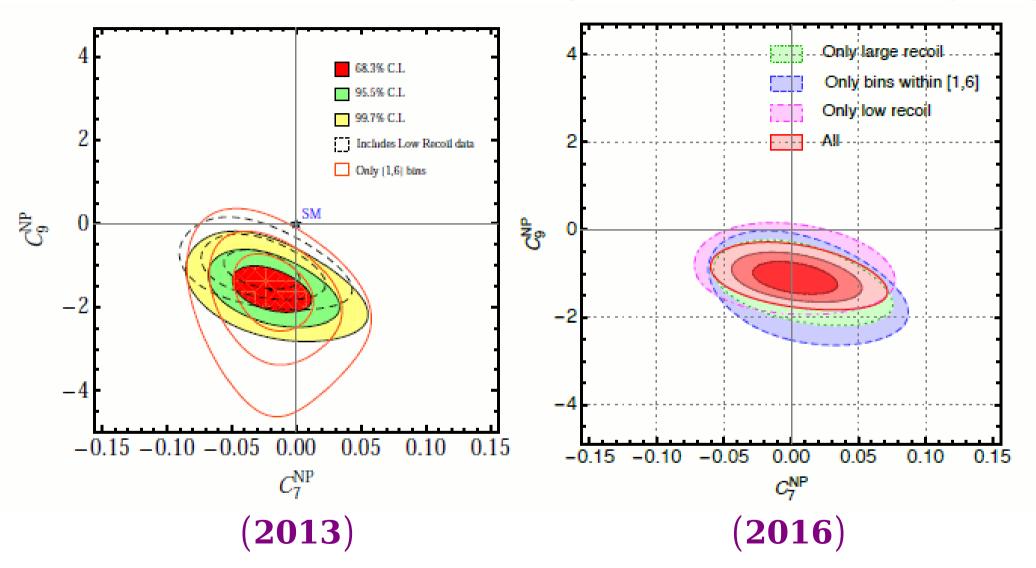
Global analysis of $b \to s\ell\ell$ anomalies (SDG, L. Hofer, J. Matlas, J. Virto)

Global analysis needed

- deviations for same quark transition but different hadrons
- eff Hamiltonian adapted for a global model-independent analysis
- further tests of the computations by looking for inconsistencies

96 observables in total (LHCb for exclusive, no CP-violating obs)

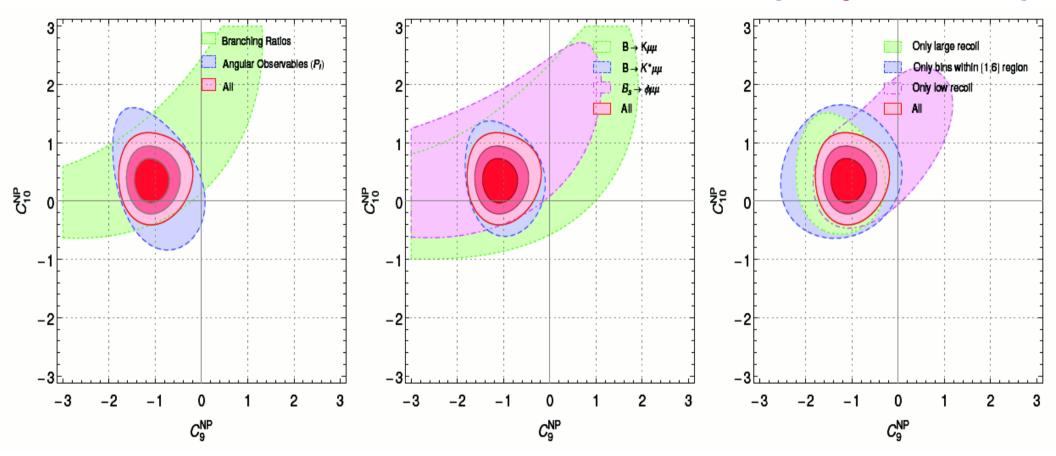
- $B \rightarrow K^* \mu \mu$ ($P_{1,2}, P'_{4,5,6,8}, F_L$ in 5 large-recoil bins + 1 low-recoil bin)
- $B_s \rightarrow \phi \mu \mu$ ($P_1, P'_{4.6}, F_L$ in 3 large-recoil bins + 1 low-recoil bin)
- ullet $B^+ o K^+ \mu \mu, \, B^0 o K^0 \mu \mu \; (BR)$
- $B \to X_s \gamma, \ B \to X_s \mu \mu, \ B_s \to \mu \mu$ (updated for the central values [Misiak et al., Huber et al., Bobeth et la.])
- $B \to K^* \gamma$ (A_I and $S_{K^* \gamma}$)


Version 2 of the analysis, essentially unchanged conclusions but

- including final results from LHCb on $B \to K^* \ell \ell$
- correcting the dictionnary between LHCb and our kinematics (change only for angular observables sensitive to NP phases)

[Grantrex, Hopfer, Zwicky; Becirevic, Sumensari, Zukanovic-Funchal]

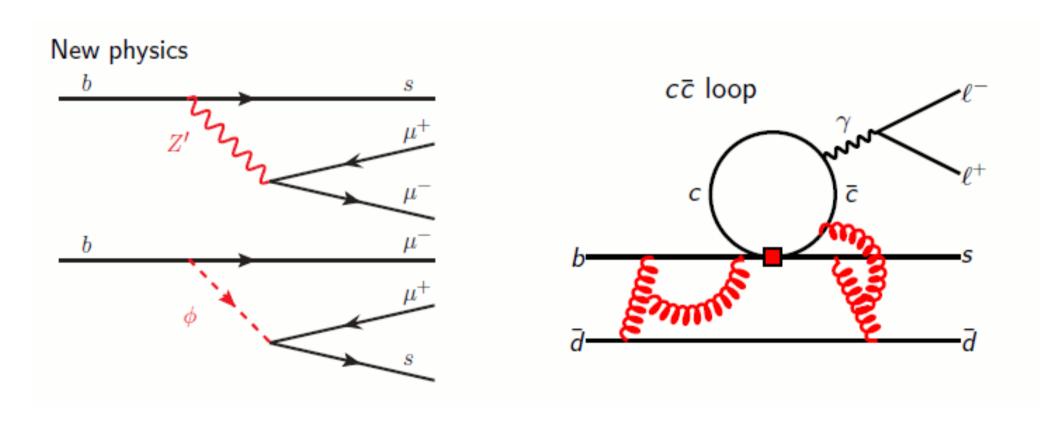
Global analysis of b→sll anomalies


[S.Descotes-Genon, Q.Matias, J.Virto]

In global fits of the WC to the data, scenarios with a large negative C_9^{NP} are preferred over the SM by typically more than $4\,\sigma$

Consistency of different fits

[See J.Virto's talk]

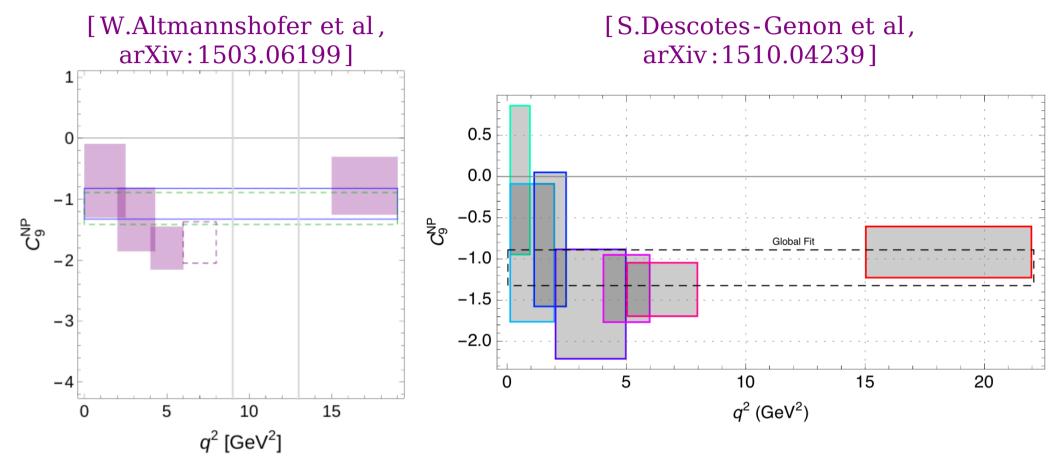


- Good consistency between BRs and Angular observables
- Good consistency between different modes
- Good consistency between different q² regions

NP or hadronic effect?

Possible explanations for shift in C_9 :

- a potential new physics contribution C_9^{NP} enters amplitudes always with a charm-loop contribution $C_9^{c\bar{c}\,i}(q^2)$
- ⇒ spoiling an unambiguous interpretation of the fit result in terms of NP



NP e.g. Z', leptoquarks

hadronic charm loop contributions

NP or hadronic effect?

Bin-by-bin fit of the one-parameter scenario with a single coefficient C_9^{NP}

 C_9^{NP} doesn't depend on q^2 , $C_9^{c\bar{c}\,i}(q^2)$ expected to exhibit a non-trivial q^2 dependence

⇒ definitely need more stat.

Lepton-flavour universality violation

QCD effect could not explain the tension in R_K !!

Fit prefers an electron-phobic scenario with NP coupling to $\mu^{\dagger}\mu^{-}$

We find new particles at the LHC

- [See J.Camalich's talk]
- Modelling their flavor structure should explain anomalies+new predictions!
- We do not find new particles but we confirm LUV
 - Reading the shape with more sophisticated (angular) observables
 - ★ Take LUV ratios between angular observables in B → K*ℓℓ
 - Bottom-up model-building: Path for discovery at LHC or beyond!
- No new particles+No LUV
 - More data needed to confirm or rule out q²-dependence of the effect
 - Tackling theoretical errors systematically will require a theoretical breakthrough
 - ▶ New ideas: e.g. $B_s^* \rightarrow \ell\ell$ (Grinstein&JMC, Phys.Rev.Lett. 116 (2016) no.14, 141801)

Only 2.6 σ deviation for R_{K} ... Need more information: R_{K^*} , R_{ϕ} ...

Sensitive probes of LUV and allow to distinguish between different NP scenarios:

- ∘ ratio e/ μ of $A_{FB}(B^0 \rightarrow K^*l^+l^-)_{[4, 6] \text{ GeV}^2}$ [W.Altmannshofer and D.Straub]
- $\circ < A_{FB}(B^0 \to K^* \mu^+ \mu^-) > / < A_{FB}(B^0 \to K^* e^+ e^-) > \text{ at } q^2 \in [4, 6] \text{ GeV}^2, [15, 19] \text{ GeV}^2$

[F.Mahmoudi et al]

$$< Q_i> = < P_i^{\mu}> - < P_i^{e}> ... [Q.Matias et al]$$

Conclusion

- New Physics may manifest itself in B physics in many ways
- Number of exciting tensions!!
- Expect much more data, improved analyses
- Look for new observables: CP-violation, time-dependence, involving τ, LFV observables...

