KOTO: Status and Future Prospects

Tadashi Nomura (KEK/J-PARC)

- Introduction and basics of the KOTO experiment
- Latest results from the 2021 data analysis
- Prospects

HQL2023 @ TIFR, Mumbai, India on November 28-December 2, 2023

Physics in rare Kaon decays: $K \rightarrow \pi v v$

 s-d transition via loop diagrams, _____
 Flavor Changing Neutral Current (FCNC) process ~ A²λ⁵

~ 10⁻⁴ suppression in SM

$$K_L \to \pi^0 \nu \overline{\nu} \qquad \text{BR}_{\sim} \text{Im}(A_{s \to dZ^*})^2$$

- Top quark dominates
- $K^0 \overline{K^0}$ superposition extracts imaginary part of the amplitude
- · CP violating

• $K^+ \to \pi^+ \nu \overline{\nu}$ $BR_{\sim} |A_{s \to dZ^*}|^2$

• Top and charm contributes

$K \rightarrow \pi v v$ in the Standard Model (SM)

$$\mathfrak{Br}(K_L \to \pi^0 \bar{\nu} \nu) = \kappa_L \left(\frac{\mathrm{Im}(V_{ts}^* V_{td})}{\lambda^5} X(x_t) \right)^2$$

$$K_L \rightarrow \pi^0 \nu \nu$$

 $K^+ \rightarrow \pi^+ \nu \nu$

$$BR_{SM}(K_L \to \pi^0 \nu \overline{\nu}) = (2.94 \pm 0.15) \times 10^{-11}$$

CKM uncertainties are dominant while intrinsic one ~2%.

$$\mathcal{B}r\left(\mathsf{K}^{+} \to \pi^{+}\nu\bar{\nu}(\gamma)\right) = \kappa_{+}(1 + \Delta_{\mathrm{EM}})$$

$$\times \left|\frac{V_{\mathrm{ts}}^{*}V_{\mathrm{td}}(\mathbf{X}_{\mathrm{t}}(\mathbf{m}_{\mathrm{t}}^{2}) + \lambda^{4}\mathrm{Re}V_{\mathrm{cs}}^{*}V_{\mathrm{cd}}\left(\mathbf{P}_{\mathrm{c}}(\mathbf{m}_{\mathrm{c}}^{2}) + \delta\mathbf{P}_{\mathrm{c,u}}\right)}{\lambda^{5}}\right|^{2}$$

$$BR_{\mathrm{SM}}(K^{+} \to \pi^{+}\nu\bar{\nu}) = (8.60 \pm 0.42) \times 10^{-11}$$

BR_{SM} are quoted from Acta Phys. Pol. B 53, 6-A1 (2022)

Small theoretical uncertainty, suppressed in SM → Good probe to search for New Physics beyond SM

New physics can appear in the loop

• Even in case that $BR(K^+ \rightarrow \pi^+ vv)$ is consistent with the SM prediction.

KOTO experiment

 $K_L \rightarrow \pi^0 v v study$ at J-PARC

Grossman-Nir bound: indirect limit from relation to BR(K+→π+vv); Calc'd from NA62 results (2021) with 1σ region

KOTO collaboration

KEK, NDA, Osaka, Saga, Yamagata, Saga, Yamagata, Jeonbuk, Korea, NTU, Arizona State, Chicago, Michigan

In Tokai-village, Ibaraki, Japan

LINAC 3GeV Rapid Cycle 400MeV Synchrotron (RCS) Neutrino beam to Kamioka **30GeV Main Ring** Material and Life (MR) science Facility (MLF) **KOTO in HEF** Hadron Experimental Facility (HEF)

Experimental principle

 $K_L \to \pi^0 (\to 2\gamma) \ \nu \overline{\nu} \ (nothing)$

- 2γ in the calorimeter in the end-cap
- No extra particle, and thus no hit in veto detectors

KOTO detector

The core part of the detector, surrounding the K_L decay region, are located inside the vacuum tank.

KOTO latest results - From KOTO 2021 Data Analysis

P.O.T. = Protons On Target

KOTO data accumulation history

Review of the previous analysis (2016-18 data)

Black: observed

Single Event Sensitivity = $(7.20 \pm 0.05_{stat} \pm 0.66_{syst}) \times 10^{-10}$

Background table

Source		Number of events
K _L	$K_L \rightarrow 3\pi^0$	0.01 ± 0.01
	$K_L \rightarrow 2\gamma$ (beam halo)	$0.26\pm0.07^{\circ}$
	Other K_L decays	0.005 ± 0.005
K^{\pm}		$0.87\pm0.25^{\mathrm{a}}$
Neutron	Hadron cluster	0.017 ± 0.002
	$\mathrm{CV}\ \eta$	0.03 ± 0.01
	Upstream π^0	0.03 ± 0.03
Total		1.22 ± 0.26

Newly evaluated backgrounds

 $N_{observed}$ (=3) \Leftrightarrow Statistically consistent with N_{BG} (=1.22±0.26)

BR(K_L→ π^{0} vv)<4.9×10⁻⁹ (90% C.L.)

Better sensitivity but worse limit than the result from 2015 data

Must reduce K[±] and halo K_L backgrounds

K[±] and halo $K_L \rightarrow 2\gamma$ backgrounds

New in 2021 run: UCV - Upstream Charged Veto

- For K[±] detection in the beam at the entrance of the KOTO detector
- A plane of square scintillation fibers, read by MPPC

0.5mm-square fibers

• Tilted 25 degree to reduce inefficiency due to fibers' inactive region (clad)

KOTO 2021 data analysis:

Evaluation of K[±] flux and rejection by UCV

- K± flux was evaluated by using control data which were simultaneously taken in physics run
 - 3-cluster trigger, collecting 2γ (from π^0)+ $1\pi^{\pm}$

K[±] flux: R(K[±]/K_L)=3.3×10⁻⁵

Corresponding to K[±] BG rejection by a factor of 12

New in 2021 data analysis:

Analysis method to reject halo $K_L \rightarrow 2\gamma$

Reduce halo $K_L \rightarrow 2\gamma$ by a factor of 8, while signal efficiency = 94%

KOTO 2021 data analysis:

 P_T vs Z plot after applying all the cuts

 $K_L \rightarrow 2\pi^0$ background

- VETO VET π^0 $\rightarrow 2\gamma$ CSI n Halo neutron n Halo neutron Zv C\ VETO VET A halo neutron interacts with CV and A halo neutron interacts $K_L \rightarrow 2\pi^0$ back groduces $\eta \rightarrow$ wrong ve $K_L \to \pi^0 \pi^0 \to 4\gamma$ VETO CSI K_L VETC 2 of 4γ hit CSI and 2 are lost due to detection inefficiency
- Inefficiency of the photon detection is critical for $K_{L} \rightarrow 2\pi^{0}$ BG estimation.
 - We relied on the simulation in the past analysis but different versions of GEANT4 gave us different results.
 - Data-driven evaluations (and corrections) are needed.
 - We use $K_{L} \rightarrow 3\pi^{0}$ events with 5γ in the calorimeter as evaluation samples.
 - Calculate energy (E₆) and direction of remaining 1γ by using kinematic constraints (vertex from 2π⁰ reconstruction, transverse momentum balance, K_L mass)
 - Check the energy deposit in the detector of destination

Inefficiency evaluation by using $K_{L} \rightarrow 3\pi^{0}$

Inefficiency evaluation with 5γ data Category: Barrel (IB or MB), high E

Reconstructed E₆: >200MeV Destination: IB/MB region

Inefficiency event = N(Edep<1MeV)

- **1 in data** (uncertainty is 100%) Corresponding inefficiency = $(4.8 \pm 4.8) \times 10^{-5}$
- 1.3±0.5 in MC G4 v10.6 (cf. 0.4±0.3 in G4 v9.5 MC)
 Corresponding inefficiency = (6.2±2.5)×10⁻⁵

MC-to-data correction factor: 1/1.3 = 0.77 Uncertainty: 100% Limited by statistics of control data

$K_L \rightarrow 2\pi^0$ background with correction factors

 Applied the weight to BG events in MC, according to energies and destinations of missing photons in each event

Category	Correction factor on inefficiency	Uncertainty (Stat error of 5γ data)
Barrel, high E	0.77	+85% / -100%
Barrel, low E	1.10	±9.9%
FB (upstream)	1.42	±12.6%
BHPV (downstream)	1.5	+42% / -51%

$K_L \rightarrow 2\pi^0$ background on P_T vs Z plane

Upstream π⁰ background

- π⁰ can be produced by the interaction between halo neutrons and the upstream detector (NCC).
 - The reconstructed vertex must be around the NCC position, which is outside of the signal region.
 - If the measured photon energy is wrong (E_{measured}<E_{true}), the resultant reconstructed vertex can be inside the signal region.

This happens due to **photonuclear interactions in the calorimeter.**

→ Need data-driven evaluations

Data-driven evaluation of photo-nucleary: interactionergy measurement in Csl

account as the correction factor.

Upstream π^0 background on P_T vs Z plane

(\Leftrightarrow N_{BG}, w/o correction=0.035)

KOTO 2021 data analysis: Summary of backgrounds

Source	Estimated value
Upstream π ⁰	$0.064 \pm 0.050 (stat.) \pm 0.006 (syst.)$
K _L →2π ⁰	$0.060 \pm 0.022 (stat.) {+0.051 \atop -0.060} (syst.)$
K±	$0.043 \pm 0.015 (stat.) ^{+0.004}_{-0.030} (syst.)$
Scattered and halo K _L (→2γ)	$0.022 \pm 0.005 (stat.) \pm 0.004 (syst.)$ $0.018 \pm 0.007 (stat.) \pm 0.004 (syst.)$
Hadron cluster BG	$0.024 \pm 0.004 (stat.) \pm 0.006 (syst.)$
η production in CV	$0.023 \pm 0.010 (stat.) \pm 0.006 (syst.)$
Sum	$0.255 \pm 0.058 (stat.) {+0.053 \atop -0.068} (syst.)$

KOTO 2021 data analysis: Ready for opening the box

Single Event Sensitivity = 8.7×10^{-10} Black: Observed 450 450 Red: BG estimation 400 350 215 300 286.1±2.3 0.02±0.00 50 0 0.195±0.0

KOTO 2021 data analysis: Results

- Unblinded the hidden region
 No signal candidates
 were observed in the
 signal region.
- Set the upper limit to be BR(K_L→π⁰νν) < 2.0×10-9 at 90% confidence level.
 - Corresponding to SES×2.3 based on Poisson statistics.

We are preparing the paper of this result.

Prospects

Improvement after 2021 run

- UCV upgrade
 - Less material and better efficiency
- DAQ upgrade
 - To prepare for a higher beam power, and to accommodate more control data simultaneously in physics run
 - Capable to handle ~×2 more trigger rate
- Beam line upgrade
 - 50-cm-long, 0.9-T permanent magnet has been installed at the end of the beam line to sweep out K[±].

We are ready for next run.

The MR accelerator was shutdown in 2021-22

for the magnet power supply upgrade.

KOTO expected sensitivity in the near future

Thanks to the MR power supply upgrade in 2021-22,

- A higher repetition (5.2s \rightarrow 4.2s cycle) can be adopted \rightarrow Higher beam power
 - 65kW in 2021 with 5.2s repetition → 80kW with 4.2s repetition
- A smoother time-structure beam is expected → Reduction of accidental loss

And to go further, ... Next generation $K_{L} \rightarrow \pi^{0}vv$ experiment KOTO II in Extended Hadron Experimental Facility

Summary

- KOTO concluded the 2021 data analysis
 - The single event sensitivity = 8.7×10⁻¹⁰, the expected number of backgrounds = 0.255
 - After opening the signal box, no candidate events were observed inside the signal box.
 - New upper limit: BR(K_L $\rightarrow \pi^0 vv$)<2.0×10⁻⁹ (90% C.L.) *Preliminary*
- KOTO continues taking data and will reach the sensitivity level better than 10⁻¹⁰ in 4-5 years.
- Next generation experiment "KOTO II" is being discussed.
 - Aiming to observe >30 SM events with S/N ratio of 1