Introduction to FPGA

Honey Khindri, Pritam Palit, Ritu Devi
SERB School — 2019, TIFR

* |[ntroduction
e What is FPGA and how it works?
« Why FPGA?

e Specification, Architecture and Max 10 board used for the
project

* |[nstallation and Set-up

» Exercise 1 — AND Gate

» Exercise 2 — Half Adder

» Exercise 3 — Hexagonal Counter

« FPGA is “Field Programmable Gate Array”

e Gate Array Is prefabricated semiconductor device,
like a silicon chip.

 FPGA, Is an integrated circuit that can be
configured ‘in the field’ by the designer to perform
certain operations.

 When needed, the FPGA can be reprogrammed to
perform a completely different task from its original
one

* Reconfigurable

« Small Area

* Less power consumption
* Less cost

» Speed due to parallelism

Single Layer RPC Electronics:

Ins Rise time [-
10 ns Fall im _ Pl W3H3HHHH6 vp /P8 LVD{};’F

’ 3 abewt T ¢
It V 8.y THiiapy,

s
...............

[':Jlse Signal ey NINO based analog Front End

from strips

-

* In FPGAS, there is no defined hardware and we are the one
designing the circuit. We can configure an FPGA as we want
for our purpose.

» To create a design we write Hardware Description Language
(HDL), which is of two types — Verilog and VHDL.

 Then the HDL is synthesized into a bit file using a BITGEN
to configure the FPGA

 The FPGA stores the configuration in two type of files
- .sof (Volatile memory, lost after power off) : SRAM
- .pof (Non-volatile memory) : EPROM

» There are several FPGA vendors, e.g. Xillinx,
ALTERA, Lattice etc.

e \We here used ALTERA

» Altera has different families , Max10,
Cyclone4, Cyclone5 etc depending on
requirements.

e We used Max10, due to its low cost.

 VHDL (VHSIC Hardware description
language) Is used for programming the FPGA

FPGA Core Structure

.“. - el Island because
Fine Grain FPGA CORE o o

Channel
Width
(W) QC

B
1/0 Block --* ”'i T = 4op Channel
Ell‘hmiﬁ hm'?ll huiﬁllﬂ

Configurable

Logic Block -"""I*f' -'m "

e MUX IS used as a switch.

- Both CB, SB act as switch. CB can
connect horizontally or vertically, while SB
can do both.

40-pin GPIO

: = Q Header

7-Segment
Display (2)

H - - ratll e %

: g : :r|nrﬂmlumn..aanmﬂtmm|
(J2) USB Mini-AB for
FPGA Programming

Altera Max
10 FPGA

Push Button
Switches (2)

(14) USB Mini-AB
for USB to UART

PMOD Connector

User LEDs : L i Y 40-pin GPIO

AX. 30 Development Boa Wi 3i &% 1 Header

FPGA Programming
Microcontroller

USB to UART
(CH3406)

PIi16289

Figure 2. The Max_10_ Dev Board bottom side

» Quartus Prime (Custom Software by ALTERA)

- To compile and load the VHDL code and
program the FPGA hardware accordingly

e ModelSim-Intel FPGA Edition

- To emulate , i.e. to simulate the hardware using
software

* MAX 10 FPGA device support
- To create the environment of Max 10 family

Exercise 1 - AND

outPort1

inPort1

outPort1
inPort2

--import std_logic from the IEEE library
library ieee;
se leee.std_logic_1164.all;

--ENTITY DECLARATION: name, inputs, outputs
entity AND_gate 1is
port(inPortl : in std_logic;
inPort2 : in std_logic;

outPortl : out std_logic);
end AND_gate;
--FUNCTIONAL DESCRIPTION: how the Inverter works
architecture func of AND _gate is

pbegin
outPortl <= inPortl1l and inPort2;

end func;

Exercise 2 — Half Adder

outPort1
inPort1
. outPort1
inPort2 .
outPort2
outPort2 --import std_logic from the IEEE library

library ieee;
use ieee.std logic_1164.all;

--ENTITY DECLARATION: name, inputs, outputs
entity Half_adder is
port(inPortl : in std_logic;

inPort2 : in std_logic;

outPortl : out std_logic;|
outPort2 : out std_logic);

end Half_adder;

--FUNCTIONAL DESCRIPTION: how the Inverter works
architecture func of Half _adder is
begin
outPortl <= inPortl xor inPort2;
outPort2 <= inPortl and inPort2;

end func;

/ Multiplier

e

FlashMemory / - \ Unused CLB
EPROM I
! . Used CLB
SRA M —— & |||

$a Objects o + & x| (g Hj A <

¥ Name T+ @ 327 ps || ¥ i

b & o

=

%% Processes (Active) e + & X
¥| Name Type (filtered)

Cursor 1 327 ps

l 2| Wave l H] half adder_sim.vhd lﬂ Dataflow 4

Project : half adder sim |Now: 600 ps Delta: 2 sim:/half_adder

Hexagonal Counter — Display types

SEVEN SEGMENT DISPLAY TYPES

7 Segment display

Common Anode (CA) /

Common Cathode(CC)
Anode Cathode

(+) Dl ()

Exercise 3 — Hexagonal Counter

HEXO0[0] PIN_101 SegmentA
PIN OUT REQUIRED HEXO[1] PIN_99 SegmentB
HEXO[2] PIN_97 SegmentC
HEXO[3] PIN_94 SegmentD
HEXO0[4] PIN_95 SegmentE
HEXO[5] PIN_100 SegmentF
QEXO[G] PIN_98 SegmentG/

“HEX1[0] PIN_92 SegmentA"
- HEX1[1] PIN_90 SegmentB
SWI1 o - HEX1[2] PIN_88 SegmentC
(PIN_71) CLK 50MHz . HEX1[3] PIN_86 SegmentD
i HEX1[4] PIN_87 SegmentE

18w HEX1[5] PIN_91 SegmentF
10M02SCE144C8G QEXI[S] PIN_89 Segment G/

CLK_S0MHz

(PIN_28) LEDO
Smesmm=s=mas (PIN_54)

Entity HEX_COUNTER is
in std_logic;
: in std_logic;
out std_logic_vector(6 downto 0);-- A->0 || B: * LEDI

BWNE OO OW

(
out std_logic;
out std_logic

port
out std_logic_vector(6 downto 0); (PIN s 5)

https://www.mouses

H
end HEX_COUNTER;

2 architecture behav of HEX_COUNTER is
3
signal Rst: STD_LOGIC;
signal Pause: STD_LOGIC;

Hexagonal Counter Architecture

- * “1000000”
LEDO
CLKO |-~ | 4 Bit Counter |~
1 Bit 1 Bit 4 Bit
CLK1 | =7 | 4Bit Counter —
1 Bit 1 Bit 1t ounter 4 Bit

%

R

“0010000™

LED1 1\ -

* Period: 20ns
+ Freq: 50 MHz
* Duty Cycle: 50 %

* Period: 1s
* Freq: 1Hz
* Duty Cy«le: 50 %

* Period: 10s
* Freq: 0.1 Hz
* Duty Cycle: 50%

Hexagonal Counter Code

HEX® <= "1000000" when counter® SHARE = "0000" else

"1111001" when counter® SHARE = "0001" else
"0100100" when counter® SHARE = "0010"
"110000" when counter®_SHARE = "0811"
"0011001" when counter® SHARE "@1e6"
"00160160" when counter® SHARE = "0101"
"0000010" when counter® SHARE "@110"
"1111000" when counter® SHARE = "0111"
"0000000" when counter® SHARE 100"
"0010000" when counter® SHARE "1081"

"1000000";

HEX1 <= "1000000" when counter1i SHARE = "0000" else

"1111001" when counter1l SHARE = "06801" else
"0100100" when counter1l SHARE = "0810"
"0110000" when counter1l SHARE = "0811"
"0011001" when counter1l SHARE "@1e0"
"0010010" when counter1l SHARE "@1e1"
"0000010" when counter1l SHARE = "©110"
"1111000" when counter1_SHARE = "8111"
"00060000" when counteril SHARE "1000"
"0010000" when counteri SHARE = "1801"

"1000000";

* \We would like to thank our project
supervisor, Salam Thoithoi Singh and also
the EHEP organizers for this wonderful
project.

Thank you!

Hexagonal Counter

COUNTER USING D-FLIPFLOP

(a) Logic disgram

_a |
1

T
Qi+ 1)=D
(c) Characteristic equation (d) Graphic symbol

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

