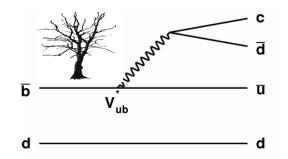
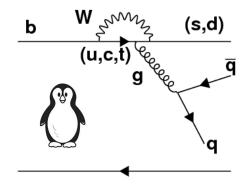


CKM 2016 Mumbai


Recent results from LHCb in charmless quasi two-body B-meson decays


<u>Sebastiana Gianì, EPFL</u> (on behalf of the LHCb collaboration)

Charmless decays

Mediated by b → u (tree) and b → d, s (penguin) transitions.

Both amplitudes comparably small
 ⇒ sensitive to CP asymmetries.

- New physics search: extra amplitudes from new particles could modify observables (BR, CP asymmetries...).
- Neutral B decays: time-dependent measurements, allow determination of mixing-induced CP asymmetries.

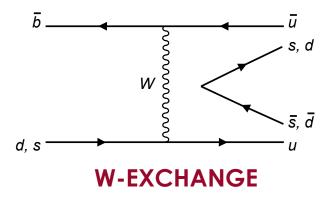
Outline

- Observation of B⁰→K⁺K⁻
 -Submitted to Phys. Rev. Lett., arXiv:1610.08288
- Solution of the decay $B_s \rightarrow \phi \pi^+ \pi^-$ -To appear in Phys. Rev. D, **arXiv: 1610.05187**

Search for $B_s \rightarrow \eta' \phi$ -LHCb-PAPER-2016-060 in preparation (NEW!)

5

arXiv:1610.08288

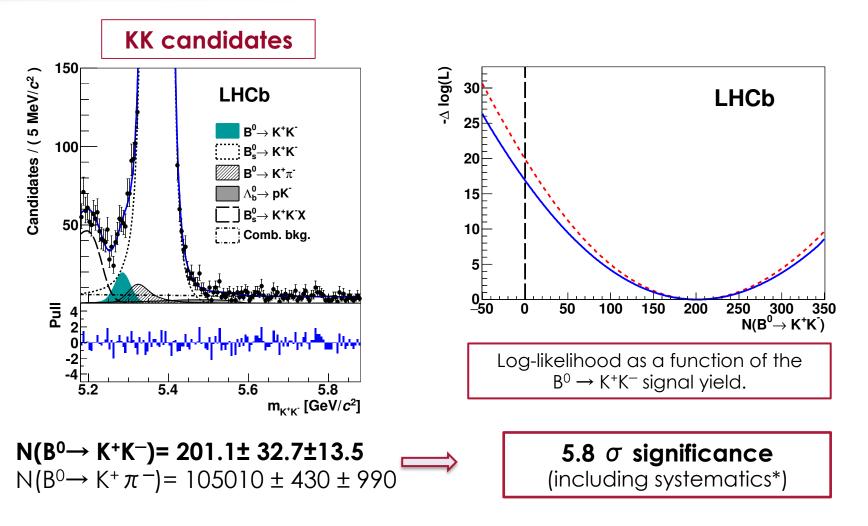

- $B^{0}(s) \rightarrow K^{+}K^{-}(\pi^{+}\pi^{-})$ proceed via weak annihilation transitions (all final state quarks differ from those in the initial state).
 - \overline{b} d d. s s. d
- Highly suppressed. Possible enhancement due to rescattering effects.
 - $B_s \rightarrow \pi^+ \pi^-$ already observed. $B^0 \rightarrow K^+ K^-$ escaped detection so far.

Decay mode	BaBar	Belle	CLEO		LHCb	Average	x10 ⁻⁶
$B^0 \rightarrow K^+ K^-$	< 0.5	$0.10 \pm 0.08 \pm 0.04$	< 0.8	$0.23 \pm 0.10 \pm 0.10^{\dagger}$	$0.12^{+0.08}_{-0.07} \pm 0.01^{\dagger}$	$0.13^{+0.06}_{-0.05}$	_
$B^0_s\!\to\pi^+\pi^-$	_	< 12		$0.60 \pm 0.17 \pm 0.04^{\dagger}$		0.76 ± 0.13	(HFAG)

† : Relative BR converted to absolute BR.

Precise BR measurements for the two mode: input to improve knowledge of QCD dynamics in $B \rightarrow hh$.

CKM 2016

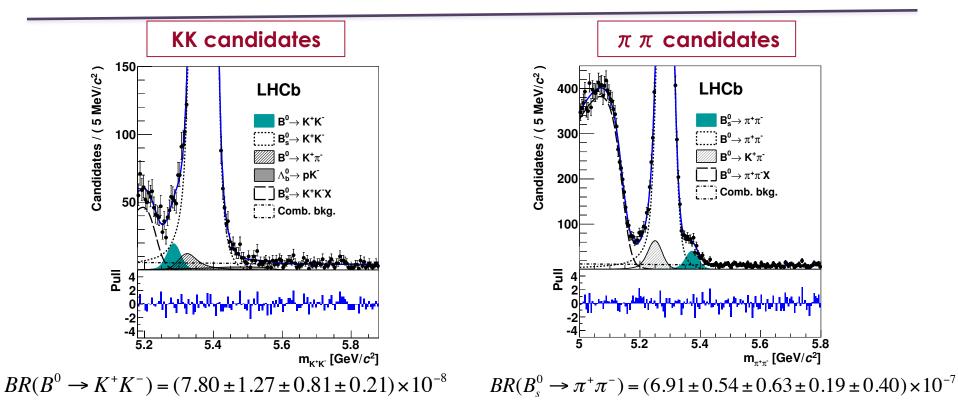

Motivations

- Datasets: full LHCb Run1 (1fb⁻¹ at \sqrt{s} = 7TeV and 2fb⁻¹ at \sqrt{s} = 8TeV).
- Blind analysis.

Event selection:

-Two separate selections (K⁺K⁻ and $\pi^+\pi^-$ samples).

- -Trigger selection: mainly using track and vertex fit qualities, kinematic information and decay topology.
- -Selection refined using multivariate classifier (**BDT**) and particle identification (**PID**) variables.
- -PID efficiencies determined using data driven method (D*+, Λ and Λ_c^{+} decays).
- Simultaneous optimization performed for PID and BDT selections (separately for the two channels).
- Signal extraction from a **simultaneous 2-body invariant mass fit** to several mutually exclusive subsamples (PID criteria): $K^+\pi^-$, p^+K^- , $p^+\pi^-$, $\pi^+\pi^-$ and K^+K^- .
- **BR(B⁰** \rightarrow K⁺ π^{-}) used as **normalization** for the BR measurements.



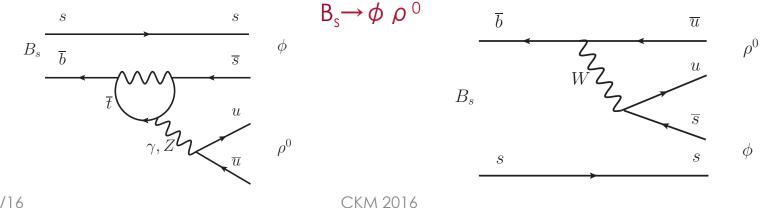
*dominant systematic: signal mass shape

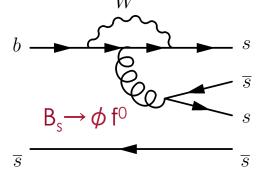
arXiv:1610.08288

Results: BR measurements

arXiv:1610.08288

MOST PRECISE MEASUREMENTS!!!


pQCD estimations in agreement within uncertainties (**arXiv:1111.6264v3**). QCDF prediction agrees with BR($B^0 \rightarrow K^+K^-$) result, but BR($B_s \rightarrow \pi^+\pi^-$) significantly smaller than the measurement (**arXiv:0910.5237**).


> *Errors: ± stat. ± syst. ± BR($B^0 \rightarrow K^+ \pi^-$) ± f_s/f_d BR($B^0 \rightarrow K^+ \pi^-$), HFAG average

 $B^{\circ}(s) \rightarrow \phi \pi^+ \pi^-$

Motivations

- $B^{0}_{(s)} \rightarrow \phi \pi^{+}\pi^{-}$ decays not yet observed. - Upper limit on the branching fraction of the decay $B^{0} \rightarrow \phi \rho^{0}$ of 3.3 x10⁻⁷ at 90% CL (BaBar). W^{-}
- Different ratios between gluonic/EW penguins (depending on the intermediate resonance).
- Large CP asymmetries not excluded in $B_s \rightarrow \phi \rho^0$ decay.

10

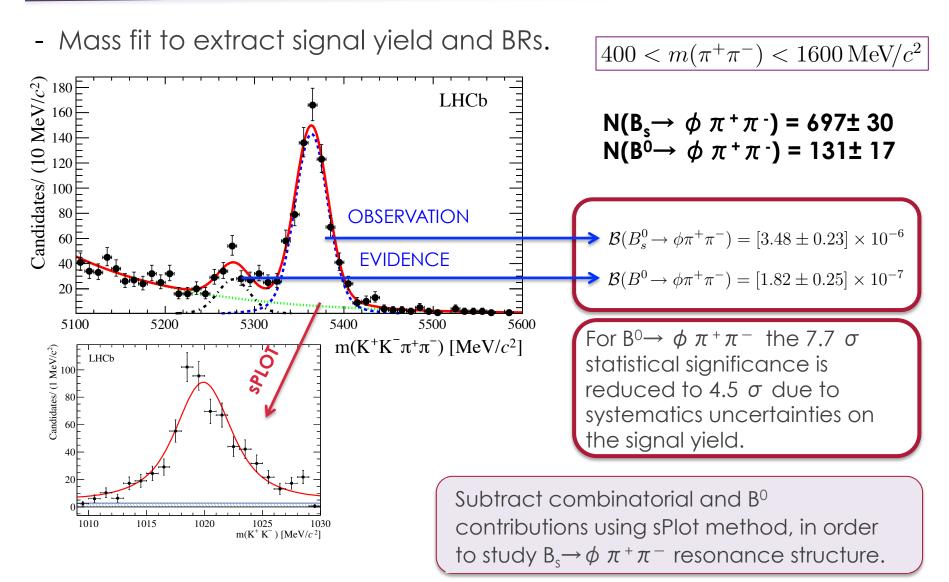
Analysis strategy

LHCb Run1 datasets

Event selection:

-Pre-selection: set of topological and PID requirements used to drastically reduce the combinatorial background.

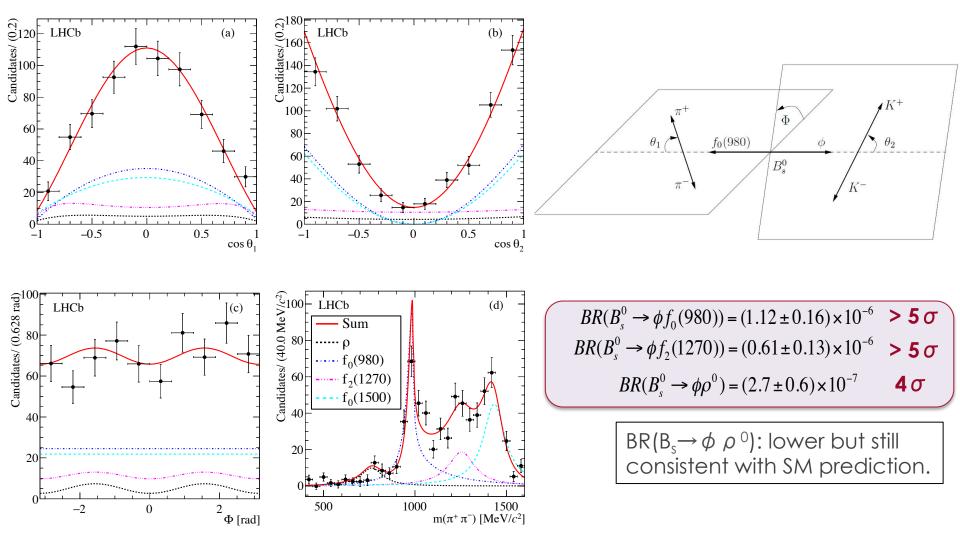
-Vetoes on charmed and $B_s \rightarrow \phi K^{*0}$ physics background.

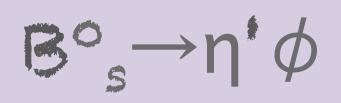

-BDT using twelve variables related to the kinematics of the B meson candidate and its decay products, PID on the kaon, and vertex displacement from the PV.

■ $B_s \rightarrow \phi \phi$ used as normalization mode

-Same selection, except kaon PID for the second ϕ , $B_s \rightarrow \phi K^{*0}$ veto not applied.

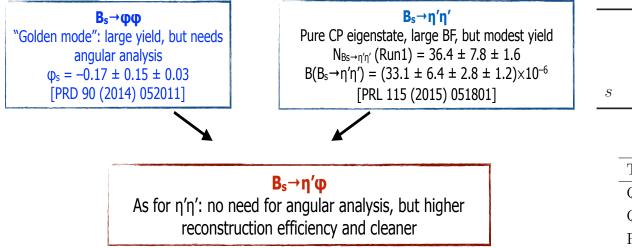
Selection optimization: simultaneous for BDT and pion PID selections.

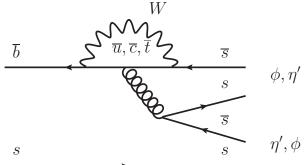

Results: BR measurements



Results: amplitude analysis

arXiv:1610.05187


 $B_s \rightarrow \phi \pi^+ \pi^-$ signal distribution angular and $\pi^+ \pi^-$ invariant mass distributions.


Motivations

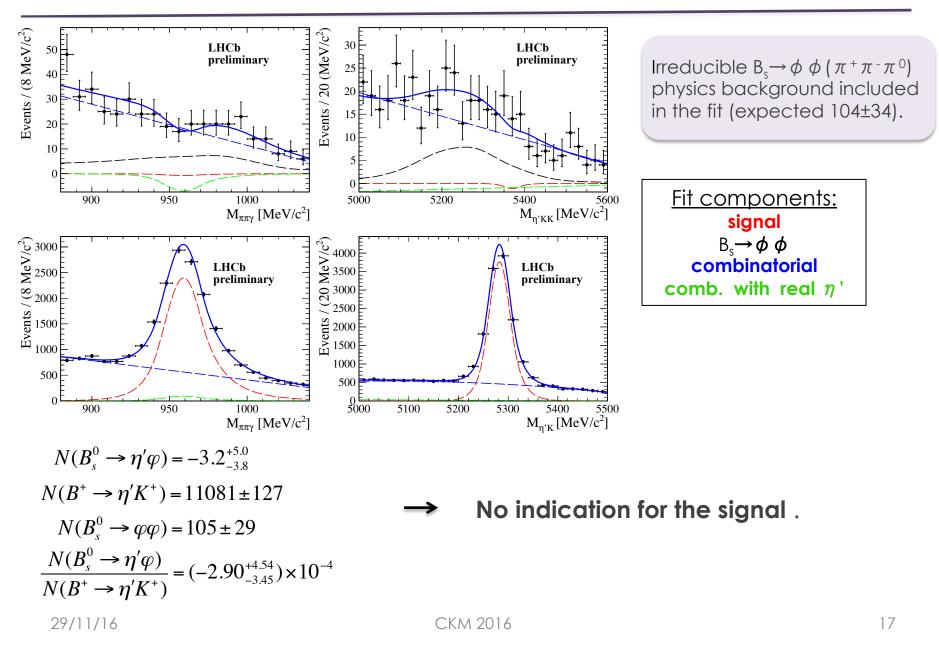
Never observed decay proceeding via $b \rightarrow s\bar{s}s$ penguin transition.

- Wide range of predictions.
- BR prediction small due to strong cancellation of PV and VP final states.
- $B \rightarrow \phi$ form factor: variation can enhance the BR by more than one order of magnitude.
- $B_s \rightarrow \phi \eta$ (') hierarchy: penguin loops size can affect relative BR. 29/11/16 CKM 2016

LHCb-PAPER-2016-060

Theory approach	${\cal B}~(10^{-6})$
QCD factorisation	$0.05^{+1.18}_{-0.19}$
QCD factorisation	$2.2^{+9.4}_{-3.1}$
Perturbative QCD	$0.19\substack{+0.20\\-0.13}$
Perturbative QCD	$20.0^{+16.3}_{-9.1}$
SCET	$4.3^{+5.2}_{-3.6}$
SU(3) flavour symmetry	5.5 ± 1.8
FAT	13.0 ± 1.6

References:
arXiv:hep-ph/0308039
arXiv:hep-ph/0701146
arXiv:hep-ph/0703162
arXiv:0910.5237
arXiv:0801.3123.
arXiv:1409.5026
arXiv:1608.02819


Analysis strategy

- Blind analysis performed using full Run 1 data.
- B⁺ → η 'K⁺ used as normalization channel.
 High yield and precisely known branching fraction (70.6 ± 2.5) ×10⁻⁶.
- Reconstruct η ' candidates as $\eta' \rightarrow \pi^+ \pi^- \gamma$ (BR = 0.291±0.001).
- Optimise similar selections for signal and normalization channels.
- Event selection:
 - Loose pre-selection on topological and kinematical variables.

-Multivariate classifier (BDT) using as nine input variables: B vertex quality and isolation, daughter kinematics. -No ϕ information used in the BDT to minimize systematics.

- 2D (m_{$\eta' KK(K)$}, m_{$\pi\pi\gamma$}) simultaneous fit for B⁺ $\rightarrow \eta' K^+$ and B⁰_s $\rightarrow \eta' \phi$ to extract yields.
- Analysis sensitivity: more than 5 sigma (40 events) expected for $BR(B_s^0 \rightarrow \eta' \phi)=4x10^{-6}$.

Mass fit

Results

Fit results corrected for small bias due to $B_s \rightarrow \phi \phi (\pi^+ \pi^- \pi^0)$ component (1.3 ± 0.7 events):

$$N(B_s^0 \to \eta' \varphi) = -1.9^{+5.0}_{-3.8}(stat) \pm 1.1(syst)$$
$$\frac{N(B_s^0 \to \eta' \varphi)}{N(B^+ \to \eta' K^+)} = (-1.73^{+4.54}_{-3.45}(stat) \pm 0.99(syst)) \times 10^{-4}$$

Upper limit (including systematics uncertainty) calculated from the integral of the likelihood in the positive region:

-2InL as a function of **yield ratio**(red), **corrected yield ratio** (blue) and **accounting for the systematic** uncertainty.

```
N(B_s \rightarrow \eta' \phi) < 8.9 (10.9) \text{ at } 90\% (95\%) \text{ CL}
```

BR(B_s→ $\eta'\phi$) < 0.82 (1.01) x 10⁻⁶ at 90% (95%) CL

Most central values of theoretical predictions significantly larger.

 18
 Image: Constraint of the second secon

:2Ln(L)

Summary

Recent LHCb results in charmless quasi 2-body B decays presented.

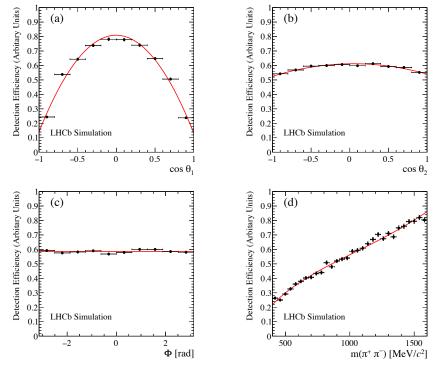
B⁰ \rightarrow KK, B_s $\rightarrow \pi \pi$:

-First observation of the rarest fully hadronic decay ever seen. -B⁰ \rightarrow KK important input in understanding of the QCD effects involving penguin annihilation diagrams. -Most precise measurement of BR(B⁰_s $\rightarrow \pi^+\pi^-$).

• Observation of the decay $B_s^0 \rightarrow \phi \pi^+ \pi^-$ and evidence for $B^0 \rightarrow \phi \pi^+ \pi^-$: -Observations of $B_s^0 \rightarrow \phi f_0$ (980) and of $B_s^0 \rightarrow \phi f_2$ (1270).

Search for $B_s \rightarrow \eta' \phi$:

- Set of a stringent upper limit.
- Most centrals values of theoretical predictions significanlty larger.
- Run 2 data in the pipeline.



$B^{0}_{(s)} \rightarrow K^{+}K^{-}(\pi^{+}\pi^{-})$: systematic uncertainties

Systematic uncertainty	$N(B^0 \to K^+ K^-)$	$N(B_s^0 \to \pi^+\pi^-)$
Signal mass shape	11.8	6.3
Combinatorial mass shape	5.5	2.6
Partially reco. mass shape	1.3	23.1
PID efficiencies	3.4	2.5
Sum in quadrature	13.5	24.2

- The results of the nominal fit used to generate pseudo-experiments which are then fitted with alternative models.
- Alternative model considered for: signal, combinatorial background, background from partially reconstructed b-hadron decays and cross-feed background.
- Systematic due to PID efficiencies: pseudo-experiments are generated varying randomly the PID efficiencies in each pseudo-experiment according to their estimated uncertainties.
- The standard deviation of the distribution of the yields determined in each set of pseudo-experiments is taken as a systematic uncertainty.

$B^{0}_{(s)} \rightarrow \phi \pi^{+}\pi^{-}$: efficiency and systematics

- Detection efficiency not flat on angular variables and $m_{\pi\pi}$ due to LHCb detector geometry and the kinematic selections on the final state particles.
- Studied performed using simulated signal events.
- Parameterised by a 4D function using Legendre polynomials (accounting for variables correlations).

Efficiencies and models systematics:

Systematic	$B^0_s \to \phi \rho$	$B_s^0 \to \phi f_0(980)$	$B_s^0 \to \phi f_2(1270)$	$B^0_s(B^0)\to\phi\pi^+\pi^-$
Trigger	0.5	0.5	0.5	0.5
Hadronic interactions	0.5	0.5	0.5	0.5
Offline selection	2.3	2.3	2.3	2.3
Particle identification	0.3	0.3	0.3	0.3
Angular acceptance	3.8	—	3.8	3.8(10.7)
Decay time acceptance	1.1	1.1	1.1	1.1(-)
$m(K^+K^-\pi^+\pi^-)$ fit	1.2	1.2	1.2	1.2(19.5)
Amplitude analysis	2.5	+4.7/-0.4	+17.6/-2.7	—
S-wave K^+K^-	6.0	6.0	6.0	—
Total	7.0	+8.2/-6.7	+19.2/-8.1	4.8(22.4)
29/11/16			CKM 201	6

 $B_s \rightarrow \phi \pi^+ \pi^-$: amplitude analysis:

DIFFERENZIAL DECAY RATE:

 $\frac{d^4\Gamma}{d\cos\theta_1 d\cos\theta_2 d\Phi dm_{\pi\pi}} = \frac{9}{8\pi} \sum_i T_i f_i(\theta_1, \theta_2, \Phi) \mathcal{M}_i(m_{\pi\pi}) d\Omega_4(KK\pi\pi)$

T_i: squares of the amplitudes A_i or interference terms between them.

f_i: decay angle distributions.

 M_i : resonant $m_{\pi \pi}$ distributions.

i	T_i	$f_i \; (heta_1, heta_2, \Phi)$	$\mathcal{M}_i(m_{\pi\pi})$	Amplitude	e Fit value	Phase	Fit value (rad)
1	$ A_0 ^2$	$\cos^2 heta_1\cos^2 heta_2$	$ M_1(m_{\pi\pi}) ^2$	A_0	0.212 ± 0.035		
2	$ A_{\parallel} ^2$	$\frac{1}{4}\sin^2\theta_1\sin^2\theta_2(1+\cos 2\Phi)$	$ M_1(m_{\pi\pi}) ^2$	$A_{\parallel} \ A_{\perp}$	$\begin{array}{c} 0.049 \pm 0.031 \\ 0.168 \pm 0.026 \end{array}$	δ_{\perp}	$+1.90\pm0.28$
3	$ A_{\perp} ^2$	$\frac{1}{4}\sin^2\theta_1\sin^2\theta_2(1-\cos 2\Phi)$	$ M_1(m_{\pi\pi}) ^2$	A_{S}	0.603 ± 0.036	c1270	0.69 0.10
4	$ A_{\parallel}A_0^* $	$\sqrt{2}\cos\theta_1\sin\theta_1\cos\theta_2\sin\theta_2\cos\Phi$	$ M_1(m_{\pi\pi}) ^2\cos(\delta_{\parallel}-\delta_0)$	$A_0^{1270} \ A_{\parallel}^{1270}$	$\begin{array}{c} 0.295 \pm 0.058 \\ 0.203 \pm 0.042 \end{array}$	$\begin{array}{c c} \delta_{0}^{1270} \\ \delta_{\parallel}^{1270} \end{array}$	$\begin{array}{c} -0.62 \pm 0.18 \\ +1.26 \pm 0.25 \end{array}$
5	$ A_S ^2$	$\frac{1}{3}\cos^2\theta_2$	$ M_0(m_{\pi\pi}) ^2$	$A^{1270}_{\perp} \ A^{1500}_{S}$	$\begin{array}{c} 0.261 \pm 0.037 \\ 0.604 \pm 0.031 \end{array}$	δ_S^{1500}	$+3.14 \pm 0.30$
6	$ A_{\perp}A_{S}^{*} $	$rac{\sqrt{6}}{3}\sin heta_1\cos heta_2\sin heta_2\sin\Phi$	$\mathcal{R}e[M_1(m_{\pi\pi})M_0^*(m_{\pi\pi})e^{i\delta_\perp}]$	<u></u>	0.001 ± 0.001	05	10.11 ± 0.00
7	$ A_0^{1270} ^2$	$\frac{5}{12}(3\cos^2\theta_1 - 1)^2\cos^2\theta_2$	$ M_2(m_{\pi\pi}) ^2$		lar resonanc	es: on	e complex
8	$ A_{\parallel}^{1270} ^2$	$\frac{5}{2}\sin^2\theta_1\sin^2\theta_2\cos^2\theta_1\cos^2\Phi_1$	$ M_2(m_{\pi\pi}) ^2$	tern	n (A _s)		
9	$ A_{\perp}^{1270} ^2$	$\frac{5}{2}\sin^2\theta_1\sin^2\theta_2\cos^2\theta_1\sin^2\Phi_2$	$ M_2(m_{\pi\pi}) ^2$	2. Vec	tor and tens	or resc	onances:
10	$ A_{\parallel}^{1270}A_{0}^{1270*} $	$\frac{5}{4\sqrt{6}}(3\cos^2\theta_1 - 1)\sin 2\theta_1\sin 2\theta_2\cos\Phi$	$ M_2(m_{\pi\pi}) ^2 \cos(\delta_{\parallel}^{1270} - \delta_0^{1270})$	thre	e complex to	erms (A0, A ₊ , A).
11	$ A_{\parallel}^{1270}A_S^* $	$\frac{\sqrt{10}}{3}\sin\theta_1\cos\theta_1\sin\theta_2\cos\theta_2\cos\Phi$	$\mathcal{R}e[M_2(m_{\pi\pi})M_0^*(m_{\pi\pi})e^{i\delta_{\parallel}^{1270}}]$	3. Inte	rference terr	m for (
12	$ A_0^{1270}A_S^* $	$\frac{\sqrt{5}}{3}(3\cos^2\theta_1 - 1)\cos^2\theta_2$	$\mathcal{R}e[M_2(m_{\pi\pi})M_0^*(m_{\pi\pi})e^{-i\delta_0^{1270}}]$		n amplitude		-

- even amplitudes (No CP violation as indicated by $B_s \rightarrow \phi \phi$ measuremnts.
- Interference terms P-wave/D-wave 4. and P-wave only small: neglected in the final fit.

CKM 2016

$B_s \rightarrow \eta' \phi$: systematic uncertainties

Efficiency ratio systematics:

Source	Relative uncertainty [%]
BDT efficiency calibration	2.5
Pion/kaon identification	1.1
Trigger efficiency calibration	2.3
SPD multiplicity (mis-modelling)	0.9
Tracking reconstruction	0.4
Hadronic interactions	1.4
Photon reconstruction	0.1
Simulation statistics	1.6
Quadratic sum	4.3

Yield (N) and yield ratio (R) systematics:

Source	σ_N (events)	$\sigma_R (10^{-4})$
Fit bias	0.7	0.7
Combinatorial background modelling	0.6	0.6
$B_s^0 \rightarrow \phi \phi$ background modelling	0.4	0.3
Fixed parameters in the fit	0.3	0.3
Quadratic sum	1.1	1.0

- The difference between the efficiencies in data and simulation of the BDT requirement for the normalisation channel used as a measure of the systematic uncertainty on the BDT efficiency.
- The correlation evaluated in simulation between the BDT variables for signal and normalisation channel is then used to determine the systematic uncertainty on the ratio of the BDT efficiencies.

- Comb. background modelling: mass fi repeated replacing background models. Quadratic sum of the differences between the values obtained in alternative fits and the nominal result assigned as a systematic uncertainty.
- Limited size of the simulated $B_s \rightarrow \phi \phi$ sample leads to an uncertainty on the determination of the PDF, which is propagated as a systematic.
- Pseudo-experiments performed with **fixed parameters** sampled randomly according to their uncertainties determined in simulated data. RMS of the result distribution assigned as systematic.