Mini-review of inclusive |V_{ub}| measurements

Bob Kowalewski University of Victoria on behalf of the BaBar Collaboration

Semileptonic B decays

- Large BF, only one hadronic current
- Provide access to |V_{ab}|
- Inclusive decays $b \rightarrow qev$:
 - Weak decay + QCD corrections
 - Operator Product Expansion in α_{s} and $\Lambda_{\text{QCD}}/\text{m}_{b}$

- For b→uev decays, unavoidable complications arise due to the large background from dominant b→cev decays
 - kinematic cuts \rightarrow non-perturbative "shape function" needed
 - universal only at leading order in Λ/m_b

|V_{qb}| – a messy business

This simple story hides the deepest of philosophical ideas:

- 1. Ignore judgment: ...
- 2. Be careful in giving/receiving advice: Each of those men made an error in judgment.

3. Improve your sampling:

(shape function)

4. Collaborate:

tion)

5. World is complex; don't take shortcuts to a simplistic understanding.

 Nature – provides PDF for actual decays

- Nature provides PDF for actual decays
- Experimenter avoid
 b→c background

- Nature provides PDF for actual decays
- Experimenter avoid
 b→c background
- Theorist avoid Shape Function region

- Nature provides PDF for actual decays
- Experimenter avoid
 b→c background
- Theorist avoid Shape Function region
- All avoid Weak Annihilation

- Nature provides PDF for actual decays
- Experimenter avoid
 b→c background
- Theorist avoid Shape Function region
- All avoid Weak Annihilation
- Plan look in multiple regions, assess consistency

Inclusive |V_{ub}| status

- HFAG/PDG 2016 summary^[1] → (CLEO, BaBar, Belle)
- Different acceptance regions are consistent
- Calculations agree with each
 other
- N.b. for all entries, |V_{ub}| is recalculated from a partial rate measured with just one model
- Correlated uncertainties from
 - HQE parameters: from fits to $b \rightarrow c$ moments, m_c input, (or $b \rightarrow s\gamma$)
 - Common experimental tools:
 EvtGen, JETSET hadronisation of X_u,
 b→cev background, GEANT4

Ref.	$\operatorname{cut}(\operatorname{GeV})$	BLNP	GGOU	DGE
[108] [111] [110] [109]	$E_e > 2.1$ $E_e - q^2$ $E_e > 2.0$ $E_e > 1.9$	$\begin{array}{r} 428\pm50\ \substack{+\ 31\\-\ 36}\\ 453\pm22\ \substack{+\ 33\\-\ 38}\\ 454\pm26\ \substack{+\ 27\\-\ 33}\\ 493\pm46\ \substack{+\ 27\\-\ 29}\end{array}$	$\begin{array}{r} 421 \pm 49 \ {}^+ \ {}^{23}_{33} \\ \text{not available} \\ 450 \pm 26 \ {}^+ \ {}^{18}_{25} \\ 493 \pm 46 \ {}^+ \ {}^{17}_{22} \end{array}$	$\begin{array}{r} 390 \pm 45 \begin{array}{r} + \begin{array}{r} 26 \\ - \begin{array}{r} 28 \\ 417 \pm 20 \end{array} \\ 434 \pm 25 \begin{array}{r} + \begin{array}{r} 29 \\ - \begin{array}{r} 29 \\ - \begin{array}{r} 29 \\ - \end{array} \\ 485 \pm 45 \end{array} \\ 485 \pm 25 \end{array}$
[113] [113] [113] [113] [115]	$q^{2}>8 \ m_X < 1.7 \ P_+ < 0.66 \ m_X < 1.55 \ E_{\ell} > 1 \ E_{\ell} > 1$	$\begin{array}{r} 430 \pm 23 \ \substack{+ \ 26 \\ - \ 28 \\} 415 \pm 25 \ \substack{+ \ 28 \\ - \ 27 \\} 430 \pm 20 \ \substack{+ \ 28 \\ - \ 27 \\} 432 \pm 24 \ \substack{+ \ 19 \\ - \ 21 \\} 449 \pm 27 \ \substack{+ \ 20 \\ - \ 22 \\} \end{array}$	$\begin{array}{r} 432\pm23\begin{array}{c} +27\\ -30\\ 424\pm26\begin{array}{c} +32\\ -32\\ 429\pm20\begin{array}{c} +21\\ -22\\ 442\pm24\begin{array}{c} +9\\ -11\\ 460\pm27\begin{array}{c} +10\\ -11\end{array}\end{array}$	$\begin{array}{r} 427 \pm 22 \ \substack{+ \ 20 \\ - \ 20 } \\ 424 \pm 26 \ \substack{+ \ 37 \\ - \ 32 } \\ 453 \pm 21 \ \substack{+ \ 24 \\ - \ 22 } \\ 446 \pm 24 \ \substack{+ \ 13 \\ - \ 13 } \\ 463 \pm 28 \ \substack{+ \ 13 \\ - \ 13 } \end{array}$
HFAC	G average	$445 \pm 16 \ ^+_{-\ 22}^{21}$	$451 \pm 16 \ ^{+ 12}_{- 15}$	$452 \pm 16 \ ^{+ \ 15}_{- \ 16}$

^[1] latest preliminary HFAG results in backup slides

Plan for this talk

- Can we really push into the b→c region?
 - consider new BaBar endpoint analysis as an illustrative example
- Should we embrace the shape function?
 - plug for SIMBA, plea for results
- What can we improve using the large Belle II dataset?
 - need many detailed measurements
 - B tagging not a panacea

New BaBar result for inclusive $|V_{ub}|$

- BaBar |V_{ub}| from the inclusive electron spectrum [arXiv:1611:05624]
 - full data set: 467M BBbar, 44.4fb⁻¹ continuum; supercedes 2006 result
 - updated HQE parameter values as per HFAG 2013
 - fit to $b \rightarrow X_{\mu}ev$, continuum, and 6 B background contributions to determine partial BF for $E_e > p_{min}$, p_{min} as low as 0.8 GeV Large statistics: >10⁶ events / 50 MeV bin;
- Simulated (MC) BBbar decays generated using EvtGen + JETSET
- Simple NN to reject continuum

statistical uncertainties dominated by continuum subtraction

Kowalewski - CKM 2016

Analysis strategy

- Fit on-Y(4S) and off-Y(4S) data simultaneously; separate Y(4S) contributions into 5 separate b→c components, secondary electrons, b→uev
- Fit spectrum over a range [p_{min}, 2.7] GeV; with p_{min} from 0.8 2.1 GeV
- Avoid details of b→uev in the endpoint (SF) region by using a wide bin from 2.1-2.7 GeV
- Consider 4 different calculations of b→uev inclusive spectrum; mix in exclusive final states ("hybrid" model)

- Calculations based on OPE + SF modeling
 - DN DeFazio, and Neubert, JHEP 9906, 017 (1999), (superceded by BLNP)
 - BLNP Bosch, Lange, Neubert, Paz, Nucl. 894 Phys. B 699, 335 (2004)
 - GGOU Gambino, Giordano, Ossola, Uraltsev, JHEP 908 10, 058 (2007)
 - BLNP and GGOU include perturbative and non-perturbative effects in an expansion in powers of 1/m_b. SFs used depend on externally-determined parameters
 - DGE Andersen, Gardi, JHEP 0601, 097 (2006), calculates SF using Sudakov resummation
- Parametric input:
 - Parametric input comes from global fits to hadronic mass and lepton energy moments in B \rightarrow X_cev decays, combined with either a constraint on m_c or E_{γ} moments from B \rightarrow X_s γ
 - Translation to other schemes as needed

HFAG 2013 kinetic scheme	X _c ev + m _c constraint	$X_c ev + X_s \gamma$
m _b [GeV]	4.560±0.023	4.574±0.032
μ_{π}^{2} [GeV ²]	0.453±0.036	0.459±0.037

Fitted spectra in Y(4S) frame

 $B \rightarrow X_u ev$ electron spectra for $p_e > 0.8$ GeV after $b \rightarrow c$ and continuum subtraction based on fit

Fitted spectra in Y(4S) frame

 $B \rightarrow X_u ev$ electron spectra for $p_e > 0.8$ GeV after $b \rightarrow c$ and continuum subtraction based on fit

Understanding the fit results

- The region with good sensitivity to $B \rightarrow X_u ev$ is in the wide 2.1-2.7 GeV bin
 - Models differ in their predictions for the fractional rate in this bin
 - The normalization of the predicted $B \rightarrow X_u ev$ spectrum, and thus of its BF, is largely fixed by this bin
 - This dependence of the total rate and/or $|V_{ub}|$ on the b \rightarrow uev model impacts *any* measurement that ventures into the b \rightarrow cev allowed region

• Partial BF results for $p_{min} < E_e < 2.7 \text{ GeV}$: BaBar arXiv:1611:05624

∆BF×10³\mode	I DN	DGE	GGOU	BLNP
p _{min} = 0.8 1.4	$10 \pm 0.08^{+0.21}_{-0.15}$	1.43 ± 0.08	$1.55 \pm 0.08^{+0.10}_{-0.09}$	$2.27 \pm 0.13^{+0.19}_{-0.16}$
p _{min} = 2.1 0.3	$33 \pm 0.02^{+0.01}_{-0.01}$	0.33 ± 0.02	$0.34 \pm 0.02^{+0.01}_{-0.01}$	$0.40 \pm 0.02^{+0.01}_{-0.01}$
	exp SF	exp	exp SF	exp SF

- HQE parameter input from $X_c ev$ moments + m_c constraint
 - $m_b = 4.560 \pm 0.023$, $\mu_{\pi}^2 = 0.453 \pm 0.036$
 - results for other inputs given in arXiv:1611.05624
- Quoted values are corrected for final-state radiation
- Note dependence of partial BF on model (especially large for p_{min} = 0.8 GeV, but still present for p_{min} = 2.1 GeV)

Systematic uncertainties

- Experimental systematic uncertainties due to
 - luminosity; event selection; form factors of D, D^{*}, D^{**}; composition of P-wave and heavier charm states; J/ψ , τ and fake backgrounds; bremsstrahlung; CM energy; wide bin width; non-BB backgrounds
- Total experimental error on $|V_{ub}|$ below 4% for $p_{min} < 2.4 \text{ GeV}$
- Uncertainties in calculated rate due to
 - parametric input (m_b, μ_{π}^2)
 - QCD matching scales, weak annihilation, α_{s}
- Theory + parameter uncertainty estimates on |V_{ub}| are ~4-7% for p_{min} < 2.2 GeV</p>
- Current estimates of theory uncertainty fall with p_{min}; is this ok?

- Results are lower than most previous measurements (but not for BLNP)
- Consistent with previous BaBar analysis (2006)
- Band shows PDG 2016 inclusive average
- N.b. the most precise measure-ments in the average are for E_e>1.0 GeV (B-tagged), i.e. deep into b→c allowed region. The partial BFs in those measurements were not done separately for each model

- solid squares parameters from X_c fit with m_c constraint
- ▲ solid triangles parameters from $X_c + X_s \gamma$ fit
- open symbols translation from "kinetic" to "shapefunction" scheme using
 - μ = 1.5 GeV (default is μ = 2.0 GeV)
- Previous BaBar electron spectrum result (2006)
- HFAG averages of all inclusive measurements

What improves with B tagging?

- B tagging removes most continuum, allows determination (with tails) of q², P₊, hadronic variables m_x, ...
- Measurements in b→c allowed region still have huge background; K rejection, D* partial reco help, but can't overcome the factor of 50 in the ratio of rates
- The experimentally constraining information is in the b→c forbidden region; this will be true even with Belle II statistics

Embrace the shape function region

- The data in the lepton endpoint region carry a lot of information – it is currently being thrown away
- SIMBA authors have talked about using this I'd love to see results!

- In B-tagged measurements, statistics are lower but one can use P₊ (or, in the language of PLB 541, 29 (2002), "E_w+|P_w|"), which carries more direct information about the SF
- A promising path: combine inclusive Belle II measurements in b→c forbidden region with SIMBA

Other measurements for Belle II

- A number of items need improvement
 - − The composition of the B → $X_c ev$ background, in particular if one continues to push into the b→cev − allowed region
 - Solution Measure exclusive $B \rightarrow X_c ev$ final states/FFs for D(*)n π , D(*) η , etc.
 - The modeling of $B \rightarrow X_u ev$ decays
 - the incorporation of both non-resonant and resonant states into MC generators is an ad-hoc procedure without tight constraints from data
 - Section 3 Sec
- Further supporting measurements:
 - Weak annihilation
 - ssbar production in X_u hadronisation
 - ...
- Perhaps use "sum-of-exclusives" approach of b→sγ, as suggested by P. Urquijo in Mainz last year

Summary

- Inclusive |V_{ub}| results remain a puzzle; internally consistent, but above CKM fit and exclusive results
- New BaBar electron spectrum result for |V_{ub}| uses CMS momenta p* as low as 0.8 GeV, but sensitivity to b→uev is primarily above 2.1 GeV
- Partial rates that include the b→c allowed region depend on the b→u model. It's essential to account for this and use the same model when deriving a partial rate and |V_{ub}|
- Theory/parameter uncertainties currently dominate we need more information to constrain SF uncertainties
- The use of high-quality experimental spectra in the b→c forbidden region in a global fit (e.g. with SIMBA) seems like the way to go – what are the limitations to this approach?

Backup

BAR Fit results for $B \rightarrow X_u ev$ partial BF

BFs in percent Errors are statistical

BaBar arXiv:1611:05624	DN	$\mathrm{BLNP}_{\mu_i=2.0\mathrm{GeV}}$	GGOU	DGE
Babai arxiv.1011.03024		$m_c { m constraint}$	$m_c { m constraint}$	
$X_u e u$	0.149 ± 0.005	0.240 ± 0.008	0.166 ± 0.006	0.153 ± 0.005
Dev Dev includes Gaussian constraint	2.233 ± 0.090	2.197 ± 0.088	2.226 ± 0.089	2.230 ± 0.089
$D^*e\nu$	5.612 ± 0.049	5.424 ± 0.049	5.579 ± 0.048	5.611 ± 0.048
$D^{(*)}\pi e u$	< 0.052	< 0.025	< 0.050	< 0.075
$D^{**}e\nu$	2.285 ± 0.071	2.540 ± 0.075	2.331 ± 0.070	2.287 ± 0.070
$D^{\prime(st)}e u$	0.046 ± 0.011	0.023 ± 0.011	0.041 ± 0.011	0.045 ± 0.011
$D \rightarrow e$	0.982 ± 0.005	0.968 ± 0.005	0.980 ± 0.005	0.982 ± 0.005
$r_L/r_L^{(0)}$ On/Off lumi ratio	1.0002 ± 0.0007	1.0002 ± 0.0007	1.0002 ± 0.0007	1.0002 ± 0.0007
$\chi^2_{ m ON} + \chi^2_{ m OFF} + \chi^2_{ m constraints}$	27.4 + 69.7 + 0.1	31.9 + 70.9 + 0.2	27.8 + 69.9 + 0.1	26.8 + 69.7 + 0.1
χ^2/ndof	97.2/85	102.9/85	97.8/85	96.6/85

- Fit repeated for 4 different predicted $B \rightarrow X_u e v$ spectra
- Quoted values are corrected for final-state radiation
- Good χ²/ndof
- Proceed to determine |V_{ub}|

$|V_{ub}|$ results, $p_{min} > 0.8$ GeV

• Values depend on model, choice of inputs

$|V_{ub}|$ results, $p_{min} > 2.1$ GeV

• Values depend on model, choice of inputs

$\Delta \mathcal{B}[10^{-3}]$	${\cal B}[10^{-3}]$	$ V_{ub} [10^{-3}]$	$\Delta \zeta(\Delta p) [{ m ps}^{-1}]$
$0.330 \pm 0.018_{\mathrm{exp}} {}^{+0.009}_{-0.009\mathrm{SF}}$	$1.471\pm 0.081_{ m exp} {}^{+0.235}_{-0.164 m SF} {}^{+0.124}_{-0.101 m the}$	${ m DN}_{ m ory}~~3.764\pm0.104_{ m exp}{}^{+0.290}_{-0.216}{}^{+0.170}_{ m SF}_{-0.148}{}^{+0.170}_{ m theory}$	$14.75^{+1.41}_{-1.70}{}^{+1.23}_{\rm SF}_{-1.24}_{\rm theory}$
	1	DGE	
$0.331\pm0.018_{\rm exp}$	$1.511 \pm 0.082 {}_{\rm exp} {}^{+0.090}_{-0.085 \rm theory}$	$3.815\pm0.104_{\rm exp}~^{+0.182}_{-0.160~{\rm theory}}$	$14.40^{+1.29}_{-1.28\rm theory}$
	$X_c \ell \nu, m_c$ constraint fit	of SF parameters, GGOU ₁	
$0.342\pm0.018_{\rm exp}~^{+0.007}_{-0.006~\rm SF}$	$1.634 \pm 0.087_{ m exp} {}^{+0.100}_{-0.090 m SF} {}^{+0.109}_{-0.163 m the}$	$\begin{array}{c} & \begin{array}{c} & +0.160 & +0.170 \\ & & -0.150 \ \mathrm{SF} & -0.251 \ \mathrm{theory} \end{array} \end{array}$	$14.06 {}^{+0.87}_{-0.82} {}^{+1.99}_{\rm SF} {}^{-1.14}_{-1.14} {}^{\rm theory}_{\rm theory}$
	$X_c \ell \nu, X_s \gamma$ constraint fi	of SF parameters, GGOU ₂	
$0.342\pm0.018_{\rm exp}~^{+0.008}_{-0.007~\rm SF}$	$1.630 \pm 0.086_{ m exp} {}^{+0.122}_{-0.105 { m SF}} {}^{+0.188}_{-0.189 { m the}}$	$\begin{array}{c} 3.899 \pm 0.103_{\rm exp} \overset{+0.198}{_{-0.185\rm SF}} \overset{+0.381}{_{-0.289\rm theory}} \end{array}$	$14.23^{+1.12}_{-1.08\rm SF}{}^{+2.37}_{-2.42\rm theory}$
	$X_c \ell \nu$, m_c constraint fit of SF pa	rameters with $\mu_i = 2.0 \text{GeV}$. BLNP ₁	
$0.397 \pm 0.022_{\rm exp} {}^{+0.014}_{-0.012} {}_{\rm SF}$	$2.359 \pm 0.130_{ m exp} {}^{+0.199}_{-0.170} {}^{+0.173}_{ m SF}$	$_{ m ory}~~4.507\pm0.124_{ m exp}^{+0.226}_{-0.204}^{+0.337}_{ m SF}_{-0.275}^{ m theory}_{ m theory}$	$12.36^{+0.89}_{-0.83}{}^{+1.66}_{\rm SF}_{-1.66}_{\rm theory}$
	X_{ell} , m_{e} constraint fit of SF pa	rameters with $\mu_i = 1.5 \text{GeV}$. BLNPa	
$0.376\pm0.021_{\rm exp}~^{+0.011}_{-0.010~\rm SF}$	$2.110 \pm 0.117_{ m exp} \stackrel{+0.158}{_{-0.143}} \stackrel{+0.128}{_{ m F}} \stackrel{+0.128}{_{-0.087}}$ the	$\begin{array}{c} \text{4.356} \pm 0.120_{\mathrm{exp}} \overset{+0.198}{_{-0.190\mathrm{SF}}} \overset{+0.317}{_{-0.265\mathrm{theory}}} \end{array}$	$12.55^{+0.92}_{-0.85\rm SF}{}^{+1.68}_{-1.64\rm theory}$
	$X_{c}\ell\nu, X_{c}\gamma$ constraint fit of SF p	rameters with $\mu_i = 2.0 \text{ GeV}$. BLNP ₃	
$0.389\pm0.022_{\rm exp}~^{+0.015}_{-0.013~\rm SF}$	$2.244 \pm 0.124_{ m exp} {}^{+0.215}_{-0.183} {}^{+0.152}_{ m F}_{-0.117}$ the	$4.367 \pm 0.121_{ m exp} \stackrel{+0.270}{_{-0.248 m SF}} \stackrel{+0.313}{_{-0.257 m theory}}$	$12.91{}^{+1.25}_{-1.17\rm SF}{}^{+1.67}_{-1.67\rm theory}$
	$X_{c}\ell\nu$, $X_{c}\gamma$ constraint fit of SF p	rameters with $\mu_i = 1.5 \text{GeV}$, BLNP.	
$0.370\pm0.020_{\rm exp}~^{+0.012}_{-0.010~\rm SF}$	$2.013 \pm 0.111_{\text{exp}} \stackrel{+0.179}{_{-0.153}} \stackrel{+0.112}{_{\text{SF}}}_{-0.075}$ the	$\begin{array}{c} \text{A} = 1.0 \ \text{GeV}, \ \text{BBAU} \\ \text{A} \\ \text{B} \\ \text{A} \\ \text{CV} \end{array} + \begin{array}{c} 0.259 \\ \pm 0.116_{\text{exp}} \\ -0.239 \ \text{SF} \\ -0.250 \ \text{theory} \end{array}$	$13.10^{+1.30}_{-1.20\rm SF}{}^{+1.70}_{-1.66\rm theory}$

Description of fit

- Simultaneous binned χ^2 fit to on- and off-resonance samples
- Continuum component fitted to

 $a_0 \Big(\exp \Big(a_1 p_i + a_2 p_i^2 + a_3 p_i^3 \Big) + \exp \Big(a_4 p_i + a_5 p_i^2 \Big) \Big)$

BB component fitted to sum of contributions

$$\sum_{k} b_{k} g_{k}(\mathbf{t}, p_{i})$$

 $g_k(\mathbf{t}, p_i) - MC$ predictions for 6 B $\rightarrow X_c ev$ modes + B $\rightarrow X_u ev$ model

 b_k – fitted corrections to default MC BFs

t – form-factor parameters (fixed)

- External constraint term added to χ^2 for B \rightarrow Dev: $\frac{(b_{Dev} b_{Dev}^{PDG})^2}{\sigma_{PDG}^2}$ • 50 MeV bins except for 2.1.2.7 CeV (bins bins)
- 50 MeV bins except for 2.1-2.7 GeV (big bin);
 this reduces dependence on theory in SF-dominated region

p_i = electron momentum in bin *i*

Free parameters $a_{i,} b_k$

Experimental systematic uncertainties

•	relative
	uncertainties on
	partial BF

$p^{\min}(\text{GeV}/c)$	0.8	1.5	2.1	2.3
Single Track efficiency	0.1	0.1	0.1	0.0
Charged track multiplicity	1.2	1.9	1.3	1.0
Particle identification	0.5	0.5	0.5	0.5
Hadron mis-ID background	0.7	0.7	0.8	0.5
Photon selection	0.4	0.3	0.4	0.2
Neural net event selection	$+3.0 \\ -0.8$	$^{+3.3}_{-1.2}$	+3.6 -1.2	$^{+3.1}_{-2.1}$
non- $B\overline{B}$ background	0.5	0.5	0.5	0.8
$B \to X_u e \nu$ exclusive decays	0.3	0.2	0.3	0.3
$B \to D^{(*)} l \nu$ form factors	1.1	0.5	1.2	0.2
$B \rightarrow D^{**} e \nu$ form factors	0.6	0.4	0.6	0.0
$B \rightarrow D^{**} e \nu$ BF	0.4	1.1	0.5	0.1
$B \rightarrow D^{(\prime)} e \nu \text{ BF}$	0.2	0.9	0.2	0.0
Widths of $D^{(\prime)}$ states	0.2	0.5	0.2	0.0
J/ψ and $\psi(2S)$ background	0.1	0.2	0.1	0.1
au background	0.2	0.7	0.3	0.1
B momentum	1.5	1.5	1.6	0.5
Bremsstrahlung	0.3	0.1	0.3	0.0
Final state radiation	0.6	0.6	0.5	0.6
Width of wide bin	0.4	0.4	0.3	0.0
$N_{B\overline{B}}$ normalization	1.1	1.1	1.1	1.1
Total exp. systematic uncertainty	+4.2	+4.8	+4.7	+3.8
Total exp. statistical uncertainty	3.8	5.0	3.5	2.8
Total exp. uncertainty	+5.7	+7.0	+5.9	+4.7
rotar oup, anotrainty	-4.9	-6.2	-4.8	-4.1

Details of fit

• Linear correlation coefficients

	$De\nu$	$D^*e\nu$	$D^{(*)}\pi e u$	$D^{**}e\nu$	$D'^{(*)}e\nu$	$X_u e \nu$	$D \rightarrow e$	a_0	a_1	a_2	a_3	a_4	a_5	$r_L/r_L^{(0)}$
$De\nu$	1	-0.827	0.032	-0.398	-0.449	-0.305	-0.060	0.018	-0.048	0.058	-0.036	0.023	-0.032	0.001
$D^*e\nu$		1	-0.024	-0.158	0.784	-0.128	0.309	0.050	0.029	-0.146	0.126	0.038	0.125	0.008
$D^{(*)}\pi e\nu$			1	-0.031	0.004	0.027	0.012	-0.066	0.033	0.033	-0.048	-0.044	-0.052	-0.028
$D^{**}e\nu$				1	-0.601	0.598	-0.361	-0.062	0.030	0.055	-0.063	-0.055	-0.066	-0.012
$D'^{(*)}e\nu$					1	-0.236	0.206	0.069	-0.051	-0.034	0.053	0.070	0.063	0.001
$X_u e \nu$						1	-0.252	-0.461	0.310	0.252	-0.369	-0.425	-0.363	-0.107
$D \rightarrow e$							1	-0.108	0.204	-0.189	0.104	-0.102	0.037	-0.116
a_0								1	-0.827	-0.196	0.670	0.980	0.671	0.139
a_1									1	-0.315	-0.190	-0.870	-0.209	-0.103
a_2										1	-0.801	-0.122	-0.818	0.012
a_3											1	0.610	0.947	0.035
a_4												1	0.627	0.027
a_5													1	-0.006
$r_L/r_L^{(0)}$														1

	Measurement	Accepted region		$\Delta \mathcal{B}[10^{-4}]$	Notes		
	CLEO [521]	$E_e > 2.1 \mathrm{GeV}$		$3.3 \pm 0.2 \pm 0.2$.7		
Latest	BABAR [520]	$E_e > 2.0 \text{GeV}, s_h^{\text{max}}$	$^{ m c} < 3.5{ m GeV^2}$	$4.0 \pm 0.2 \pm 0.1$.3		
	BABAR [518]	$E_e > 2.0 \text{GeV}$		$5.7 \pm 0.4 \pm 0.4$	5		
results from	Belle [522]	$E_e > 1.9 \text{GeV}$		$8.5 \pm 0.4 \pm 1.$.5		
	BABAR $[511]$	$M_X < 1.7 { m GeV}/c^2$,	$q^2 > 8 \mathrm{GeV}^2/c^2$	$6.9 \pm 0.6 \pm 0.6$.4		
HFAG.	Belle [523]	$M_X < 1.7 \mathrm{GeV}/c^2$,	$q^2 > 8 \mathrm{GeV}^2/c^2$	$7.4 \pm 0.9 \pm 1.$.3		
,	Belle [524]	$M_X < 1.7 { m GeV}/c^2$,	$q^2 > 8 \mathrm{GeV}^2/c^2$	$8.5 \pm 0.9 \pm 1.$	$8.5 \pm 0.9 \pm 1.0$ used only in BLL average		
courtesv	BABAR $[511]$	$P_+ < 0.66{ m GeV}$		$9.9 \pm 0.9 \pm 0.9$.8		
courtesy	BABAR [511]	$M_X < 1.7 { m GeV}/c^2$		$11.6\pm1.0\pm0$.8		
C Bozzi	BABAR [511]	$M_X < 1.55 { m GeV}/c^2$	1	$10.9\pm0.8\pm0$.6		
0. 00221	Belle [510]	$p_\ell^* > 1 { m GeV}/c$		$19.6 \pm 1.7 \pm 1.6$			
	BABAR [511]	(M_X,q^2) fit, $p_\ell^* > 1$	1 GeV/c	$18.2\pm1.3\pm1$	$18.2 \pm 1.3 \pm 1.5$		
	BABAR $[511]$	$p_\ell^\star > 1.3 { m GeV}/c$		$15.5\pm1.3\pm1$	$15.5 \pm 1.3 \pm 1.4$		
		BLNP DGE		GGOU	ADFR	BLL	
			Input para	meters			
	scheme	SF	MS	kinetic	MS	1S	
	Ref.	[529, 530]	Ref. [531]	see Sec. 5.2.2	Ref. [531]	Ref. [532]	
	m_b (GeV) μ^2 (GeV ²)	4.582 ± 0.026 0.145 +0.091	4.18 ± 0.043	4.554 ± 0.018 0.414 ± 0.078	4.188 ± 0.043	4.704 ± 0.029	
	μ_{π} (GeV ⁻)	0.140 -0.097	-	U.414 ±0.078	-	-	
	Ref. E [591]	$4.22 \pm 0.40^{\pm 0.29}$	$3.86 \pm 0.45 \pm 0.25$	$ V_{ub} $ values 4.22 $\pm 0.40^{\pm0.22}$	$3.42 \pm 0.40^{+0.17}$		
	$M_{\rm X}, a^2$ [523]	$4.22 \pm 0.49_{-0.34}$ $4.51 \pm 0.47^{+0.27}$	$3.80 \pm 0.43_{-0.27}$ $4.43 \pm 0.47^{+0.21}$	$4.23 \pm 0.49_{-0.31}$ $4.52 \pm 0.48^{+0.25}$	$3.42 \pm 0.40_{-0.17}$ $3.93 \pm 0.41^{+0.18}$	$4.68 \pm 0.49^{+0.30}$	
	E_{e} [522]	$4.93 \pm 0.46^{+0.29}_{-0.29}$	$4.82 \pm 0.45^{+0.23}_{-0.23}$	$4.95 \pm 0.46^{+0.16}_{-0.21}$	$4.48 \pm 0.42^{+0.20}_{-0.20}$	-	
	E_{e} [518]	$4.52 \pm 0.26 ^{+0.26}_{-0.30}$	$4.30 \pm 0.24 \substack{+0.23 \\ -0.23} \substack{+0.23 \\ -0.23}$	$4.52 \pm 0.26 ^{+0.17}_{-0.24}$	$3.93 \pm 0.22^{+0.20}_{-0.20}$	-	
	$E_{e}, s_{\rm h}^{\rm max}$ [520]	$4.48 \pm 0.22^{+0.31}_{-0.36}$	$4.14 \pm 0.20 \substack{+0.28 \\ -0.27}$	-	$3.62\pm0.18^{+0.18}_{-0.17}$		
	p_ℓ^* [510]	$4.50 \pm 0.27^{+0.20}_{-0.22}$	$4.62 \pm 0.28 \substack{+0.13 \\ -0.13}$	$4.62 \pm 0.28 \substack{+0.09 \\ -0.10}$	$4.50 \pm 0.30 \substack{+0.20 \\ -0.20}$	-	
	M_X [511]	$4.24 \pm 0.19^{+0.25}_{-0.25}$	$4.47 \pm 0.20^{+0.19}_{-0.24}$	$4.30 \pm 0.20^{+0.20}_{-0.21}$	$3.83 \pm 0.18^{+0.20}_{-0.19}$	-	
	M_X [511] $M_{\pi\pi}$ a^2 [511]	$4.03 \pm 0.22_{-0.22}^{+0.22}$ $4.22 \pm 0.22^{+0.22}_{-0.22}$	$4.22 \pm 0.23^{+0.27}_{-0.27}$ $4.24 \pm 0.22^{+0.18}_{-0.18}$	$4.10 \pm 0.23^{+0.17}_{-0.17}$	$3.75 \pm 0.21^{+0.18}_{-0.18}$ $3.75 \pm 0.20^{+0.17}_{-0.18}$	-	
	P_{1} [511]	$4.32 \pm 0.23_{-0.28}$ $4.09 \pm 0.25^{+0.25}$	$4.24 \pm 0.22_{-0.21}$ $4.17 \pm 0.25^{+0.28}$	$4.33 \pm 0.23_{-0.27}$ $4.25 \pm 0.26^{+0.26}$	$3.75 \pm 0.20_{-0.17}$ $3.57 \pm 0.22^{+0.19}$	$4.00 \pm 0.24_{-0.29}$	
	$p_{e_{*}}^{*}(M_{X}, q^{2})$ fit [5	11 $4.33 \pm 0.24^{+0.19}_{-0.23}$	$4.45 \pm 0.24^{+0.12}_{-0.37}$	$4.44 \pm 0.24^{+0.09}_{-0.10}$	$4.33 \pm 0.24^{+0.19}_{-0.10}$	-	
	p_{ℓ}^{*} [511]	$4.34 \pm 0.27 \substack{+0.21 \\ -0.21} \color{red}{+0.20}$	$4.43 \pm 0.27 \substack{+0.13 \\ -0.13}$	$4.43 \pm 0.27 \substack{+0.09 \\ -0.11}$	$4.28 \pm 0.27 \substack{+0.19 \\ -0.19}$	-	
	M_X, q^2 [524]	-	-	-	-	$5.01 \pm 0.39 \substack{+0.32 \\ -0.32}$	
29 November 2016	Average	$4.45\pm0.15^{+0.21}_{-0.22}$	$4.52 \pm 0.16 ^{+0.15}_{-0.16}$	$4.52\pm0.15^{+0.11}_{-0.14}$	$4.04\pm0.13^{+0.18}_{-0.12}$	$4.62\pm0.20^{+0.29}_{-0.29}$	