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Outline

✤ Overview

✤ Semileptonic B to pseudoscalar D

✤ Semileptonic B to vector D*

✤ Look forward



What’s the delay?

✤ Lattice spacing: cuts off short distance/high energy physics

✤ Cost of generating configurations ∼ (1/a)5 or worse

✤ Increased computing and improved actions now allow charm to 
be treated like u, d, s

m⇡ mK mD mB

0.09 fm 0.06 fma = 0.15 0.12



Heavy quark methods

✤ Fermilab Lattice + MILC — Fermilab RHQ b & c

✤ HPQCD — Nonrelativistic b, staggered (HISQ) c

✤ RBC-UKQCD — Columbia RHQ b & Möbius domain wall c

✤ Paris group — ratio method, twisted-mass b & c



Gauge field ensembles

✤ FNAL/MILC use whole set

✤ HPQCD published B ➝ D 
and Monahan (Lattice 2016) 
Bs ➝ Ds use circled subset

MILC asqtad, nf = 2+1
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✤ At Lattice 2016, 
Harrison reported 
preliminary B ➝ D* 
results on circled subset
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Gauge field ensembles

MILC HISQ, nf = 2+1+1
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Gauge field ensembles

✤ At Lattice 2016 Witzel 
reported preliminary 
results on circled ensemble

RBC-UKQCD, nf = 2+1



Gauge field ensembles

✤ Paris group (Atoui et al.) has 
published a study of Bs ➝ Ds 
form factor near zero recoil 
using this set

ETM, nf = 2
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Baryonic decay
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FIG. 15. Predictions for the ⇤b ! ⇤c `�⌫̄` di↵erential decay rates for ` = e, µ, ⌧ in the Standard Model. The inner bands show
the statistical uncertainty and the outer bands show the total uncertainty, calculated using Eq. (83).
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Figure 5: Left: determination of |Vcb| and |Vub| using a fit to recent lattice results for the exclusive processes
B ! p`n [12, 13] (blue band), B ! D⇤`n [29] (light yellow band), B ! D`n [18, 19] (dark yellow band)
and the ratio of differential decay rates G(Lb ! p`n)/G(Lb ! Lc`n) [30] (pale green diagonal band). The
exclusive determinations are compatible at the p = 0.27 level. The inclusive determinations [28, 31], shown
by the cross, display a strong tension with the 1s and 2s error ellipses. (Figure credit: [32]). Right:
comparison of a recent preliminary result for the B-mixing ratio x from Ref. [38] with previous results
[33, 34, 35, 36, 37].

gives |Vcb| = 39.78(42)⇥ 10�3 and |Vub| = 3.59(9)⇥ 10�3. The nonlattice inclusive values from
Refs. [31, 28] plotted there differ by several standard deviations.

2.5 Neutral B-meson mixing

Mixing in the B0
x (x = d,s) system occurs at second order in the electroweak interaction; it is

parameterized by, among other terms, the CKM matrix element |Vtx| and the hadronic expectation
value hO1xi of a DB = 2 four-quark operator O1x. The mixing strength can be parameterized by
the experimentally measured mass splitting DMB. It is popular to consider the ratio x of mixing
strengths for B0 and B0

s for which many theoretical uncertainties cancel

x =
MB0

MB0
s

s
hO1si
hO1di

=

����
Vtd

Vts

����

s
DMB0

s

DMB0

MB0

MB0
s

. (2.3)

Thus the combination of theory and experiment yields the ratio of CKM matrix elements |Vtd/Vts|.
In the past year, a new lattice calculation [38] has produced a preliminary value x = 1.210(19),

which is compared with recent results in Fig. 5. It yields a new, preliminary value |Vtd/Vts| =
0.2069(6)exp(32)thy. Here experiment is still quite a bit ahead of theory in precision.

The “unitarity triangle” provides a graphical illustration of the orthogonality of two rows of
the CKM matrix as expected from unitarity. In Fig. 6 we show the effect on the unitarity triangle
of recent results from exclusive semileptonic decays for |Vcb| and |Vub| and the preliminary result
for |Vtd/Vts| discussed above. So far the result is compatible with three-generation CKM unitarity.

2.6 Flavor-changing neutral currents

The processes B ! p`` and B ! K`` occur at second-order in the electroweak interaction and
are sensitive to new flavor-changing-neutral-current processes. Recent lattice calculations have
produced improved differential decay rates [13, 44, 47]. See also Ref. [45]. They are compared
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FIG. 14. Predictions for the ⇤b ! p `�⌫̄` di↵erential decay rates for ` = e, µ, ⌧ in the Standard Model. The inner bands show
the statistical uncertainty and the outer bands show the total uncertainty, calculated using Eq. (83).
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B ➝ D l ν

d�

dw
(B ! D`⌫) = |⌘EW |2G

2
F |Vcb|2m5

B

48⇡3
(w2 � 1)

3
2 r3(1 + r)2G2(w)

hD(k)|s̄�µb|B(p)i =


(p+ k)µ � m2

B �m2
D

q2
qµ

�
f+(q

2) +
m2

B �m2
D

q2
qµf0(q

2)

r =
mD

mB

f2
+(q

2) =
(1 + r)2

4r
G2(w)

w =
p · k

mBmD

Differential decay rate (l = e, μ)

Form factor is one which parametrizes the matrix element

with                              and

with

The f0 form factor is needed for B ➝ D τ ν .



Published B ➝ D

TABLE VI. Error budget (in percent) for f
+

and f

0

at w = 1.16, which is the largest recoil value
used in our momentum extrapolation to the full kinematic range and determination of |V

cb

| (see
Sec. V). The first row includes the combined error from statistics, matching, and the error from
truncating the chiral expansion resulting from the chiral-continuum fit: errors in parentheses are
approximate sub-parts estimated as described in the text. The total error is obtained by adding the
individual errors in quadrature. Not explicitly shown because they are negligible are finite-volume
e↵ects, isospin-breaking e↵ects, and light-quark mass tuning.

Source f

+

(%) f

0

(%)

Statistics+matching+�PT cont. extrap. 1.2 1.1

(Statistics) (0.7) (0.7)

(Matching) (0.7) (0.7)

(�PT/cont. extrap.) (0.6) (0.5)

Heavy-quark discretization 0.4 0.4

Lattice scale r

1

0.2 0.2

Total error 1.2 1.1

f

0

to be modest. The errors from the chiral-continuum fit are under good control for the
range of simulated lattice recoil values, but grow rapidly for w & 1.16 where we do not have
data.

We add the remaining systematic uncertainties a posteriori to the chiral-continuum fit
error. We estimate the individual contributions to the form-factor error budget in the follow-
ing subsections, discussing each source in a separate subsection for clarity. In practice, only
the heavy-quark discretization errors (Sec. IVD) and lattice-scale uncertainty (Sec. IVE)
turn out to be significant.

We assume that systematic uncertainties from heavy-quark discretization e↵ects and
the lattice-scale uncertainty are uncorrelated, and therefore add them in quadrature. We
then propagate them to f

+

and f

0

according to the linear transformation Eqs. (2.5) and
(2.6), which depends on the recoil w, taking them to be 100% correlated between w values
and between h

+

and h�. Both the lattice-scale and heavy-quark discretization errors are
substantially smaller than the chiral-continuum fit error, and increase only slowly with w.

B. Matching

The ⇢ factors in Eq. (2.11) enter in the renormalization of the components of the transition
vector current V µ

cb

. As explained in Sec. III E these factors are estimated in one-loop lattice
perturbation theory to the extent that such calculations are available. As discussed near the
end of Sec. III F, we build the uncertainty estimates of Eqs. (B31), (B32) and (B37) into
the chiral-continuum fit via Eq. (3.17).

A noteworthy feature of Table VI is the size of the matching error after the chiral-
continuum fit. Had we omitted the errors in Eqs. (B31), (B32), and (B37) from the fitting
function, we would have to add them a posteriori, as we did for B ! D

⇤ at zero recoil [5].
Following the procedure used in Ref. [5], we would assign errors of 1.4% and 1.1% for f

+
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the discussion below hinges principally on our calculation
of f0ðq2Þ near this point, the validated f0ð0Þ ¼ fþð0Þ, and
a smooth connection between the two limits.

We calculate the standard-model B ! D‘! partial de-
cay rates into the three generations of leptons using these
form factors and Eqs. (1) and (2) with GS ¼ GT ¼ 0,
GV ¼ GFV

%
cb. The resulting distributions are plotted in

Fig. 2. To illustrate the role of the scalar form factor
f0ðq2Þ, we also show the rates with only the contributions
from fþðq2Þ. Because of the significant helicity suppres-
sion, the differential decay rates into light leptons are well-
approximated by a single contribution from the form factor
fþðq2Þ. For B ! D"!, however, the contribution from the
scalar form factor f0ðq2Þ comprises half of the standard-
model rate.

Given the lattice-QCD determinations of fþðq2Þ and
f0ðq2Þ, we can obtain the standard-model values for RðDÞ
and PLðDÞ. These are the primary results of this Letter, and
we now discuss the sources of systematic uncertainty.
In Ref. [15], many statistical and several systematic
errors cancelled approximately or exactly in the ratio

fBs!Ds‘!
0 =fB!D‘!

0 studied there. Some of these do not can-
cel (as well) in RðDÞ and PLðDÞ, however, because they
affect fþðq2Þ and f0ðq2Þ differently.

Table I shows the error budgets for RðDÞ and PLðDÞ. The
statistical error in RðDÞ is significant (3:7%) due to the
different phase-space integrations in the numerator and
denominator, whereas for PLðDÞ the correlated statistical
fluctuations largely cancel. For the same reason, the errors
in RðDÞ arising from the extrapolation to the physical light-
quark masses and the continuum limit (1:4%) and to the
full q2 range (1:5%) are much larger than for PLðDÞ. We
estimate the error from the chiral-continuum extrapolation

by comparing the results for fits with and without next-to-
next-to-leading-order analytic terms in the chiral expan-
sion. We estimate the error from the z extrapolation by
varying the range of synthetic data used in the z fit,
including an additional pole in the fit function and includ-
ing higher powers of z. The specific chiral and z-fit varia-
tions considered are enumerated in Table VI of Ref. [15]
and discussed in detail in the surrounding text. The remain-
ing sources of uncertainty in Table I do not contribute
significantly to the quantities studied in Ref. [15], so we
describe them in greater detail below.
We determine the bare heavy-quark masses in our

simulations by tuning the parameters #b and #c in the
heavy-quark action such that the kinetic masses of the
pseudoscalar Bs and Ds mesons match the experimentally
measured values [20]. In practice, it is easier to work with
the form factors h&ðwÞ on the lattice, which are linear
combinations of fþ;0ðq2Þ [15]. We study how the form
factors h&ðwÞ depend on #b;c by recomputing the form
factors on some ensembles at values of #b;c slightly above
and below the default ones and extracting the slopes with
respect to #b;c. We use these slopes to correct our results
for RðDÞ and PLðDÞ slightly from the simulated # values to
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FIG. 2 (color online). Differential decay rates in the standard
model for B ! De!, B ! D$!, and B ! D"! (solid lines, as
labeled). The black dash-dotted curves show the rates calculated
with f0ðq2Þ ¼ 0.
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TABLE I. Error budgets for the branching-fraction and
longitudinal-polarization ratios discussed in the text. Errors are
given as percentages.

Source RðDÞ PLðDÞ
Monte Carlo statistics 3.7 1.2
Chiral-continuum extrapolation 1.4 0.1
z expansion 1.5 0.1
Heavy-quark-mass (#) tuning 0.7 0.1
Heavy-quark discretization 0.2 0.3
Current %Vi

cb
=%V0

cb
0.4 0.7

Total 4:3% 1:5%

PRL 109, 071802 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

17 AUGUST 2012

071802-3
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FIG. 13. Form factors using both lattice and BaBar [24]
inputs, together with the experimental data points.

TABLE V. Error budget table for |V
cb

|. The first three rows
are from experiments, and the rest are from lattice simula-
tions.

Type Partial errors [%]

experimental statistics 1.55

experimental systematic 3.3

meson masses 0.01

lattice statistics 1.22

chiral extrapolation 1.14

discretization 2.59

kinematic 0.96

matching 2.11

electro-weak 0.48

finite size e↵ect 0.1

total 5.34

|Vcb| has been reported from multiple lattice and non-
lattice calculations. We compare the di↵erent determi-
nations in Fig. 14. Our result agrees with other exclusive
calculations, particularly with the most accurate result
from B ! D

⇤
l⌫, but it is also compatible within errors

with the inclusive determination. Since the discretization
error is one of the dominant errors in our calculation,
lattice errors can be reduced in the future by working on
more ensembles with finer lattice spacings.

VII. THE R(D) RATIO

The experimental data used in the previous section
to extract |Vcb| were for semileptonic decays with light
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this work+BaBar 2010
Fermilab/MILC (exclusive B to D)
Fermilab/MILC (exclusive B to D*)
Inclusive (PRL 114, 061802)

FIG. 14. |V
cb

| comparisons between inclusive and exclusive
determinations.

leptons in the final state. BaBar has also studied decays
involving the much heavier ⌧ lepton, B ! D⌧⌫⌧ , and
measured the ratio,

R(D) =
B(B ! D⌧⌫⌧ )

B(B ! Dl⌫)
, (46)

where l is either an electron or a muon. They find

R(D)|exp. = 0.440(58)(42), (47)

where the first error is the statistical and the second is
the systematic error [26].

Here we present a Standard Model prediction for R(D)
based on our new form factors. Fig. 15 compares di↵er-
ential branching fractions of Eq. (44) for B ! D⌧⌫⌧ and
for B ! Dl⌫. Although only f+(q2) contributes to the
l⌫ case, both f+(q2) and f0(q2) are involved in the ⌧⌫⌧

branching fraction. Integrating over q2 we obtain,

R(D)|SM = 0.300(8). (48)

Table VI shows a detailed error budget for R(D). Fig. 16
gives a comparison plot for di↵erent determinations of
R(D). All Standard Model based calculations are in good
agreement with each other. The di↵erence between our
result and experiment is at the 2� level. We note that
we do not use any experimental results to extract R(D).
Our result gives the most accurate pure Standard Model
prediction to date for R(D).

VIII. SUMMARY AND FUTURE PROSPECTS

In this paper we have presented a new lattice QCD
calculation of the B ! Dl⌫ semileptonic decay form fac-
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electro-weak 0.48

finite size e↵ect 0.1

total 5.34

|Vcb| has been reported from multiple lattice and non-
lattice calculations. We compare the di↵erent determi-
nations in Fig. 14. Our result agrees with other exclusive
calculations, particularly with the most accurate result
from B ! D

⇤
l⌫, but it is also compatible within errors

with the inclusive determination. Since the discretization
error is one of the dominant errors in our calculation,
lattice errors can be reduced in the future by working on
more ensembles with finer lattice spacings.
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leptons in the final state. BaBar has also studied decays
involving the much heavier ⌧ lepton, B ! D⌧⌫⌧ , and
measured the ratio,

R(D) =
B(B ! D⌧⌫⌧ )

B(B ! Dl⌫)
, (46)

where l is either an electron or a muon. They find

R(D)|exp. = 0.440(58)(42), (47)

where the first error is the statistical and the second is
the systematic error [26].

Here we present a Standard Model prediction for R(D)
based on our new form factors. Fig. 15 compares di↵er-
ential branching fractions of Eq. (44) for B ! D⌧⌫⌧ and
for B ! Dl⌫. Although only f+(q2) contributes to the
l⌫ case, both f+(q2) and f0(q2) are involved in the ⌧⌫⌧

branching fraction. Integrating over q2 we obtain,

R(D)|SM = 0.300(8). (48)

Table VI shows a detailed error budget for R(D). Fig. 16
gives a comparison plot for di↵erent determinations of
R(D). All Standard Model based calculations are in good
agreement with each other. The di↵erence between our
result and experiment is at the 2� level. We note that
we do not use any experimental results to extract R(D).
Our result gives the most accurate pure Standard Model
prediction to date for R(D).

VIII. SUMMARY AND FUTURE PROSPECTS

In this paper we have presented a new lattice QCD
calculation of the B ! Dl⌫ semileptonic decay form fac-
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Figure 28: Lattice and experimental data for fB→D
+ (q2) versus z. The filled green symbols

denote lattice-QCD points included in the fit, while blue and indigo points show experimental
data divided by the value of |Vcb| obtained from the fit. The grey band shows the preferred
three-parameter BCL fit to the lattice-QCD and experimental data with errors.

Figure 29: Left: Summary of |Vub| determined using: i) the B-meson leptonic decay branching
fraction, B(B− → τ−ν̄), measured at the Belle and BaBar experiments, and our averages for
fB from lattice QCD; and ii) the various measurements of the B → πℓν decay rates by
Belle and BaBar, and our averages for lattice determinations of the relevant vector form
factor f+(q2). Right: Same for determinations of |Vcb| using semileptonic decays. The HFAG
inclusive results are from Ref. [196].
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R(D)
12

TABLE VI. Error budget table for R(D).

Type Partial errors [%]

lattice statistics 1.24

chiral extrapolation 0.28

discretization 1.08

kinematic 1.61

matching 1.03

finite size e↵ect 0.1

total 2.54
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FIG. 15. The di↵erential branching fractions for B ! Dl⌫

and B ! D⌧⌫

tors f+(q2) and f0(q2). These were combined with ex-
perimental measurements of di↵erential branching frac-
tions to extract a value for |Vcb|excl.. Our result, given
in Eq. (1) (and repeated in (45)) is consistent with other
recent lattice determinations using di↵erent lattice ac-
tions, and provides a cross check of earlier calculations.
We summarize these results in Fig. 14.

The dominant error in our calculation is the discretiza-
tion error, followed by higher order current matching un-
certainties. The former error can be reduced by adding
simulation data from further ensembles with finer lat-
tice spacings. We are also exploring ways to improve our
matching errors by combining simulations with NRQCD
bottom-quarks with those employing heavier than charm
HISQ quarks. This approach to nonperturbative match-
ings of NRQCD/HISQ currents is described briefly in
the Appendix to Ref. [10]. There we presented ratios
of Bs ! Kl⌫ and Bs ! ⌘sl⌫ form factors and explained
how such ratios combined with a purely HISQ calculation
in the future of Bs ! ⌘sl⌫ form factors would lead to

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
R(D)

this work
Fermilab/MILC 2015
Fermilab/MILC 2012
HQET 2010
HQET 2008
BaBar 2012

FIG. 16. Comparisons between di↵erent determinations of
R(D). The references for the other determinations are BaBar
2012 [26], HQET 2008 [27], HQET 2010 [28], Fermilab/MILC
2012 [6], and Fermilab/MILC 2015 [4].

a nonperturbative determination of the NRQCD/HISQ
bottom-up current Z-factors. Similarly, nonperturbative
Z-factors for bottom-charm currents used in the present
calculation could be obtained by calculating Bs ! Dsl⌫

forms factors once with NRQCD bottom-quarks and then
again with heavy-HISQ bottom-quarks and then taking
ratios. We have already completed, and are in the pro-
cess of writing up, calculations of Bs ! Dsl⌫ form factors
with NRQCD bottom-quarks. Simulations with heavy-
HISQ bottom-quarks are also underway. Hence we ex-
pect to be able to significantly reduce theory errors in
|Vcb| determinations from B ! Dl⌫ decays in the near
future. In the meantime we hope that experimental mea-
surements will also improve considerably. Only then will
one be able to shed light on the exclusive versus inclusive
tensions for |Vub| via studies of B ! Dl⌫ decays.

In this article we also determined the ratio R(D). Our
result is given in Eq. (2) (and again in (48)). We sum-
marize comparisons between Standard Model predictions
and experiment in Fig. 16. It will be interesting to see
whether the current ⇠2� tension will develop into a true
discrepancy between experiment and the Standard Model
or disappear.
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Published Bs ➝ Ds

✤ Paris group (Atoui et al., 2014), nf = 2 results

✤ FNAL/MILC (Bailey, et al., 2015), ratio of form factors at large recoil useful for 
constraining ratio of fragmentation functions fs/fd , in turn useful for reducing 
uncertainties in Bs ➝ ! !

✤ [fq = probability that a b quark hadronizes into a Bq meson.]

✤ Opportunity to determine |Vcb| with experimental data for Bs ➝ Ds l ν

G(1) = 1.052(46)
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B ➝ D* l ν

d�

dw
= |⌘EW |2G

2
F |Vcb|2m2

D⇤

4⇡3
(mB �mD⇤)2

p
w2 � 1�(w)|F(w)|2

that it is important and timely to revisit the theoretical and
experimental ingredients of both determinations.
In this paper, we improve the lattice-QCD calculation

[6–8] of the zero-recoil form factor for the exclusive decay
B̄ → D!lν̄ (and isopin-partner and charge-conjugate
modes). Our analysis strategy is very similar to our
previous work [7], but the lattice-QCD data set is much
more extensive, with higher statistics on all ensembles,
smaller lattice spacings (as small as a ≈ 0.045 fm) and
light-quark masses as small as m̂0 ¼ ms=20 (at lattice
spacing a ≈ 0.09 fm). Figure 1 provides a simple overview
of the new and old data sets; further details are given in
Sec. II. Our preliminary status report [8] encompassed the
higher statistics but not yet four of the ensembles in the
lower left-hand corner of Fig. 1.

With this work, we improve the precision of jVcbj as
determined from exclusive decays to that claimed for the
determination from inclusive decays: 2%. Moreover, we
reduce the QCD uncertainty on jVcbj to the same level as
the experimental uncertainty. Because jVcbj normalizes the
unitarity triangle, it appears throughout flavor physics. For
example, the SM expressions for εK and for the branching
ratios of the golden modes Kþ → πþνν̄ and KL → π0νν̄ all
contain jVcbj4. Therefore, further improvements—beyond
what is achieved here—are warranted, particularly during
the course of the Belle II experiment [9].
The amplitude for B → D! semileptonic decay is

expressed in terms of form factors,

hD!ðpD! ; ϵðαÞÞjAμjBðpBÞiffiffiffiffiffiffiffiffiffiffiffi
2MD!
p ffiffiffiffiffiffiffiffiffiffi

2MB
p ¼ i

2
ϵðαÞν

!½gμνð1þ wÞhA1
ðwÞ − vνBðv

μ
BhA2

ðwÞ þ vμD!hA3
ðwÞÞ'; ð1:1Þ

hD!ðpD! ; ϵðαÞÞjVμjBðpBÞiffiffiffiffiffiffiffiffiffiffiffi
2MD!
p ffiffiffiffiffiffiffiffiffiffi

2MB
p ¼ 1

2
εμνρσϵ

ðαÞ
ν

!vρBv
σ
D!hVðwÞ; ð1:2Þ

where Aμ and Vμ are the (continuum QCD) b → c electro-
weak currents, vμB ¼ pμ

B=MB, v
μ
D! ¼ pμ

D!=MD! , the velocity
transfer w ¼ vB · vD!, and ϵðαÞ is the polarization vector of
the D! meson. In the SM, the differential rate for B− →
D0!l−ν̄ (and the charge-conjugate mode) is given by

dΓ
dw

¼ G2
FM

3
D!

4π3
ðMB −MD! Þ2

× ðw2 − 1Þ1=2jηEWj2jVcbj2χðwÞjF ðwÞj2; ð1:3Þ

where ηEW provides a structure-independent electroweak
correction from next-to-leading-order box diagrams, in
which a photon or Z boson is exchanged along with the
W boson [10]. (See Sec. VIII for details.) The rate for B̄0 →
Dþ!l−ν̄ (and charge conjugate) is the same as Eq. (1.3) but
with an additional factor on the right-hand side ð1þ παÞ
[11,12], which accounts for the Coulomb attraction of the
final-state charged particles.
The notation χðwÞjF ðwÞj2 is conventional, motivated by

the heavy-quark limit. In the zero-recoil limit, w → 1, one
has χðwÞ → 1, and only one form factor survives:

F ð1Þ ¼ hA1
ð1Þ: ð1:4Þ

From Eq. (1.1), one sees that the needed matrix element is
hD!jϵðαÞ ·AjBi with initial and final states both at rest.
For nonvanishing lepton mass ml, the rate is multiplied

by ð1 −m2
l=q

2Þ2, and the expressions for χðwÞ and jF ðwÞj2
receive corrections proportional to m2

l=q
2 [13]. At zero

recoil, these corrections reduce to an additional factor
ð1þm2

l=q
2
maxÞ on the right-hand side of Eq. (1.4).

Except for l ¼ τ, lepton mass effects are not important
even at the current level of accuracy.
Because precision is so crucial, the lattice-QCD calcu-

lation must be set up in a way that ensures considerable
cancellation of all sources of uncertainty. The pioneering
work of Hashimoto et al. [6,14] introduced several double
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FIG. 1 (color online). Range of lattice spacings and light-quark
masses used here (colored or gray discs) and in Ref. [7] (black
circles). The area is proportional to the size of the ensemble. The
lattice spacings are a ≈ 0.15, 0.12, 0.09, 0.06, and 0.045 fm.
Reference [8] did not yet include the ensembles with
ða; m̂0=msÞ ¼ ð0.045 fm; 0.20Þ, (0.06 fm, 0.14), (0.06 fm,
0.10), and (0.09 fm, 0.05).
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F(1) = hA1(1)At zero recoil, w=1 and 

Differential decay rate (l = e, μ)

Where F(w) is a linear combination of form factors



Published B ➝ D*

but with only the continuum curve displayed. The extrapo-
lated value for the form factor is also shown, including the
full systematic error for our final result.

VII. SYSTEMATIC ERRORS

In this section, we examine the uncertainties in our
calculation in detail. Statistical uncertainties are computed

with a single-elimination jackknife and fits use the full
covariance matrix to determine χ2. We devote a subsection
to each of the sources of uncertainty: fitting and excited
states, the heavy-quark mass and lattice-scale dependence,
the chiral extrapolation of the light spectator-quark mass
(in particular the D!-D-π coupling), discretization errors,
perturbation theory, and isospin effects.

A. Fitting and excited states

We determine plateau fits to the double ratio, Eq. (2.12).
The fits are done under a single-elimination jackknife, after
blocking the data by 4 on all ensembles. The χ2 is defined
using the full covariance matrix. Statistical errors are
determined in fits that include the full correlation matrix,
whichwas remade for each jackknife fit. In order to correctly
propagate the correlated statistical errors to the chiral/
continuum extrapolation fits, the jackknife data sets on
different ensembles are combined into a larger block-
diagonal jackknife data set. The block size of 4 is chosen
only to keep the combined data set to a manageable size for
the chiral and continuum extrapolation fits. We find that the
statistical errors do not grow with blocking, and that there-
fore the autocorrelation errors are negligible even without
blocking. This was not true in our previous calculation [7],
although that calculation used many of the same ensembles.
This is because in the current calculation,wemove the source
origin around the lattice randomly, whereas in the previous
calculation the source origin was fixed.
With several hundred configurations on each ensemble,

and over 2000 configurations on some ensembles, we do
not have difficulty resolving the full covariance matrix in
our correlator fits, and we do not need to resort to a
singular value decomposition cut on the eigenvalues of
the covariance matrix. We find that the averaged ratio
data [constructed from our correlators using Eq. (3.2)] on
the 0.09 fm lattices are well described by a fit to a
constant over a range of five time slices, and that the fit
range where an acceptable fit is obtained is roughly the
same in physical units across ensembles. The correlated
χ2=d:o:f: ranges from 0.08 to 0.85, with one exception.
On the 0.06 fm, 0.15ms ensemble, the χ2=d:o:f: is 1.71, a
bit higher than one might expect, based on fits to the
same physical time range on other ensembles. Also, the
double ratio RðtÞ appears somewhat asymmetric under
the interchange of source and sink on this ensemble, but
this must be a statistical fluctuation, since RðtÞ is
symmetric by construction. For this ensemble, we adopt
the PDG prescription and rescale the statistical error by
the square root of the χ2=d:o:f: Time ranges for fits, their
p values, and the raw values for hA1

ð1Þ are given in
Table IV. We take the good quality of our fits as evidence
that systematic errors due to excited states are small
compared to other errors, and aside from the inflation of
the error on one of our data points, we assign no further
error to fitting and excited states.
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FIG. 7 (color online). The full QCD points for hA1
ð1Þ versusm2
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at five lattice spacings are shown in comparison to the continuum
curve. The cross is the extrapolated value, the solid line is the
statistical error, and the dashed line is the total systematic error
added to the statistical error in quadrature.
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lattice-spacing dependence is, at most, as large as the
statistical error. The HQET theory of heavy-quark discre-
tization effects anticipates this small size but does not,
however, predict a simple power series for the a depend-
ence, making a naive extrapolation problematic. In
Appendix B, we present a detailed analysis for the expected
a dependence. In short, we expect the overall size of heavy-
quark discretization errors to be of order aΛ̄2=mc and a2Λ̄2,
but we must choose a value of Λ̄. We compare the observed
variation with a2 of the data in Fig. 8 with the theory
[53,54]. We find that if we choose Λ̄ ¼ 450 MeV, then the
theoretical estimates are compatible with the data’s a
dependence. In this way, we deduce that the discretization
error on the superfine lattice (a ≈ 0.060 fm) is 1%, leading
to the row labeled “discretization errors” in Table X.

F. Perturbation theory

The calculation of ρAj defined in Eq. (2.10) is carried out
at one-loop order in perturbation theory, as discussed in
Sec. IV. Because ρAj is defined from a ratio of current
renormalization factors, its deviation from unity is expected
to be small by construction. Indeed, the one-loop correc-
tions to ρAj shown in Table V confirm our expectation.
They range from 0.05% to 0.6%. In order to estimate the
error due to the omitted higher-order corrections, we
consider the variation of the one-loop corrections to ρAj

with the quark masses used in this calculation. We also
consider the related renormalization factor ρV4, defined
from the charm-bottom vector current V4

cb analogously to
the definition of ρAj in Eq. (2.10). We find ρ½1# ≤ 0.1 for
both currents. We then estimate the uncertainty as ρ½1#max · α2s
with ρ½1#max ¼ 0.1 and αs ¼ αVð2=aÞ evaluated at
a ≈ 0.045 fm, which yields a systematic error of 0.4%.

G. Isospin effects

The experimental measurements of the branching frac-
tion for B → D&lν assume isospin symmetry, and different
isospin channels are averaged together [76]. We estimate
the size of the effect of isospin corrections based on the

chiral extrapolation. One could explicitly include the
difference between u- and d-quark masses in the chiral
effective theory, though this has not been worked out
through one loop for this process, to the best of our
knowledge. As a simple estimate of the size of isospin
effects we vary the end point of our chiral extrapolation
between the physical πþ and the π0 mass. We use the πþ

mass extrapolation for our central value, but shifting to the
π0 changes the result by 0.1%. Changing the charm-mass
splitting between the D&0 and the D&þ is a much smaller
effect. Thus, we quote an error of 0.1% due to isospin
effects.

VIII. ELECTROWEAK EFFECTS

In this section, we discuss the electroweak and electro-
magnetic effects in the semileptonic rate, Eq. (1.3). They do
not enter the lattice-QCD calculation but are needed, in
addition to the hadronic form factor F ð1Þ ¼ hA1

ð1Þ, to
obtain jVcbj. The factor ηEW (written as ηem in Ref. [1])
takes the form [10]

ηEW ¼ 1þ α
π

!
ln
MW

μ
þ tan2θW

M2
W

M2
Z −M2

W
ln

MZ

MW

"
; ð8:1Þ

where the weak mixing angle is specified via
cos θW ¼ g2=ðg22 þ g21Þ1=2; g2 and g1 are the gauge cou-
plings of SUð2Þ × Uð1Þ. The first (second) term stems
from W-photon (W-Z) box diagrams plus associated parts
from vertex and wave-function renormalization. This form
assumes that GF in Eq. (1.3) is defined via the muon
lifetime, which is the case for GF in Ref. [1]. In the SM,
MW ¼ MZ cos θW , and the bracket simplifies to lnðMZ=μÞ.
With this assumption, taking the factorization scale
μ ¼ MB( , and varying μ by a factor of 2 to estimate the
error, one finds

ηEW;SM ¼ 1.00662ð16Þ: ð8:2Þ

To reiterate, it is theoretically cleaner not to include this
factor in F ðwÞ. This way makes it more straightforward to
study or remove the μ dependence in future work.
In the experiments [76], the charged-lepton energy

spectrum is corrected for bremsstrahlung with the
PHOTOS [77] generator. For charged B decay, this package
has been shown [78] to reproduce the exact formula [79].
For neutral B decay, the chargedD− and lþ in the final state
attract each other, which is reflected in a slightly different
formula for the radiation [11]. Reference [12] recom-
mended treating this effect with a Coulomb correction, 1þ
απ=2 ¼ 1.01146 on the amplitude, which is larger than the
electroweak correction and similar in size to the uncer-
tainties from experiment and from QCD. Note, however,
that a detailed study of radiative corrections in K → πlν
finds that QCD-scale effects reduce the Coulomb effects,
such that the total is closer to 1% than 2% [80]. Already

TABLE X. Final error budget for hA1
ð1Þ where each error is

discussed in the text. Systematic errors are added in quadrature
and combined in quadrature with the statistical error to obtain the
total error.

Uncertainty hA1
ð1Þ

Statistics 0.4%
Scale (r1) error 0.1%
χPT fits 0.5%
gD&Dπ 0.3%
Discretization errors 1.0%
Perturbation theory 0.4%
Isospin 0.1%
Total 1.4%
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Looking forward

✤ Final results for HPQCD Bs ➝ Ds (MILC asqtad) and HPQCD 
B ➝ D* (MILC HISQ) expected soon

✤ Underway: B(s) ➝ D*(s) at nonzero recoil by FNAL/MILC 
(asqtad) and HPQCD (HISQ)

✤ HPQCD also working on B ➝ D (HISQ)

✤ HPQCD: compare NRQCD & relativistic HISQ to improve 
normalisation (see A. Lytle talk Wed 10:10, WG2)
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