Pulse Shaping and Filtering Circuit

Sweta Baradia¹, Sagar Modak², Abinash Medhi³

- 1. Saha Institute Of Nuclear Physics, Kolkata
 - 2. Indian Institute of Science, Bangalore
 - 3. Tezpur University, Tezpur

Group - 21

February 25, 2023

Outline

- Introduction
- Motivation
- Experimental set-up
 - CR-RC Circuit
 - Pole-Zero Cancellation circuit
 - Semi-Gaussian shaper circuit
- Summary and Conclusion

Introduction

A pulse shaper is a circuit that is used to reshape an input signal into a desired output signal.

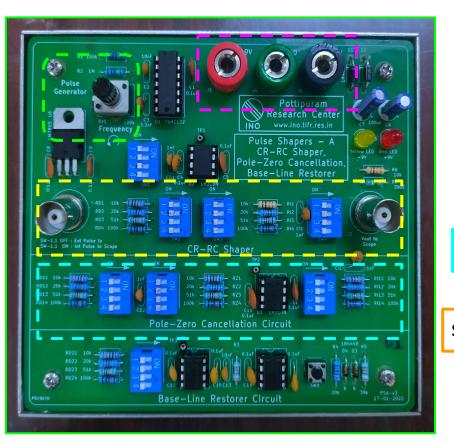
- Pulse shaping modifies the signal waveform for better accuracy
- Filtering attenuates or amplifies signal frequency
- Different filters are used based on signal characteristics and goals

Importance of pulse shaping in Particle Physics:

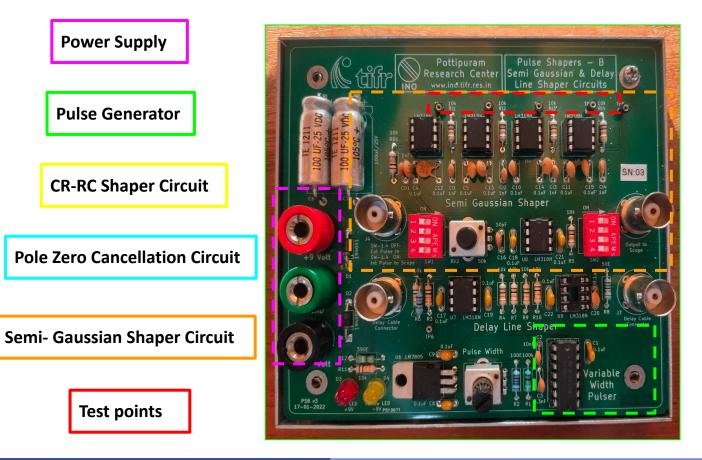
- Reducing noise and optimizing S/N ratio
- Reducing the effect of pile-up
- Meet the requirement of DAQ components

Introduction

Nuclear Physics

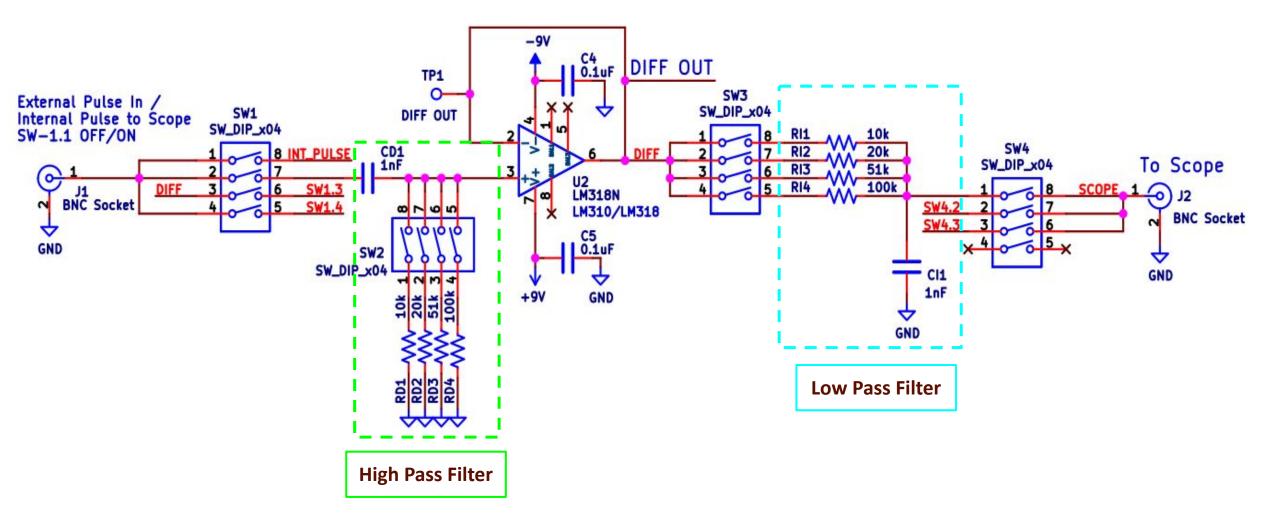

- Enhancement of sensitivity to low-level radiation sources
- To enable detection and analysis of rare decay events
- Helps in improving discrimination of different types of radiation

Particle Physics Experiments


- Improve measurement of particle properties and interactions.
- To enhance energy resolution and particle identification
- To increase data acquisition rates for high-energy collision

Experimental Setup

- Board A
 - CR-RC Shaping
 - Pole-Zero Cancellation


- Board B
 - Semi-Gaussian Shaping

Group 21

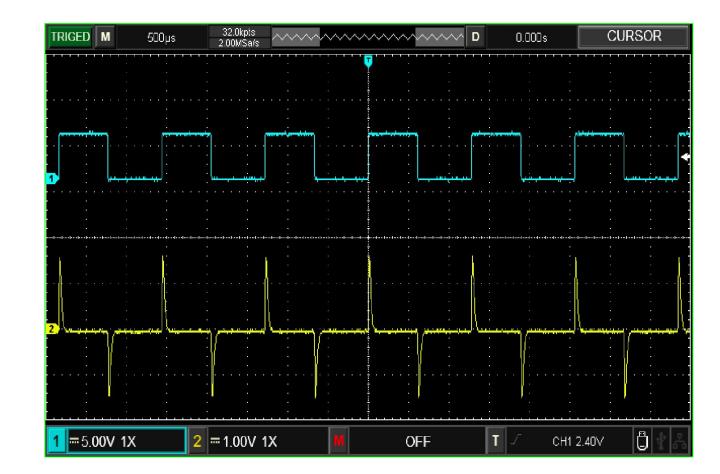
ICFA 2023

CR - RC Circuit

Group 21

ICFA 2023

February 25


4

CR - RC Circuit

- The combination of a CR differentiator and RC integrator is commonly used as a pulse shaper in linear amplifiers.
- The response of this CR-RC network to a step voltage of amplitude Vi is:

$$V_0 = \frac{V_i \tau_1}{\tau_1 - \tau_2} (e^{-t/\tau_1} - e^{-t/\tau_2})$$

 T_1 and T_2 are the time constants of the differentiating and integrating circuits

To minimize pile-up effects, the time constants should be kept short so that the pulse returns to baseline as quickly as possible.

Group 21

ICFA 2023

February 25

5

CR - RC Circuit

CR's т (µs)	RC's τ (μs)	E _{out} (V)	тs to pulse peak (µs)	тs to base (µs)
10	10	3.10	11.6	52.8
10	51	1.08	24	164
20	51	1.76	26	206
51	20	4.71	40	234
100	20	5.80	47	448

E_{in} = 5 V

Pole Zero Cancellation

Pole: A point of infinite magnitude and 90-degree phase shift

Zero: A point of zero magnitude and unchanged phase

- **Pole-zero cancellation:** technique to improve ckt performance using poles/zeros.
- Undershoot: output falls below expected value before settling.
- Pole-zero cancellation overcomes undershoot by damping it using poles/zeros.

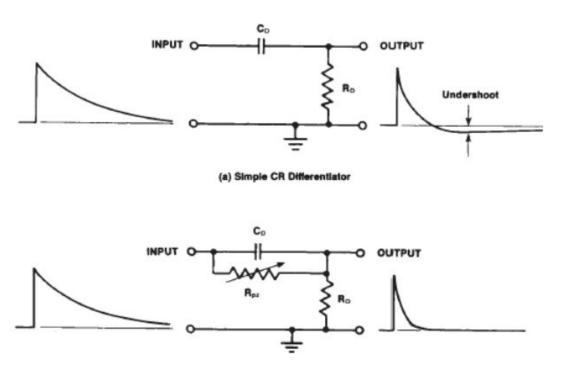
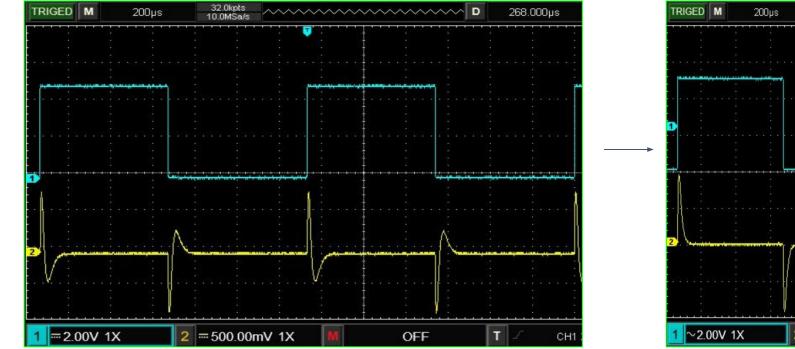
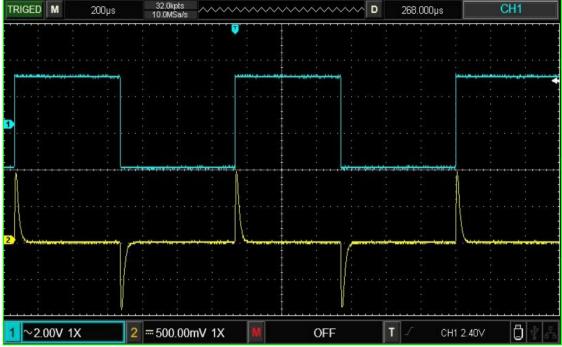


Fig: Pole-zero cancellation circuit


Condition:
$$R_{PZ}C_D= au_i$$

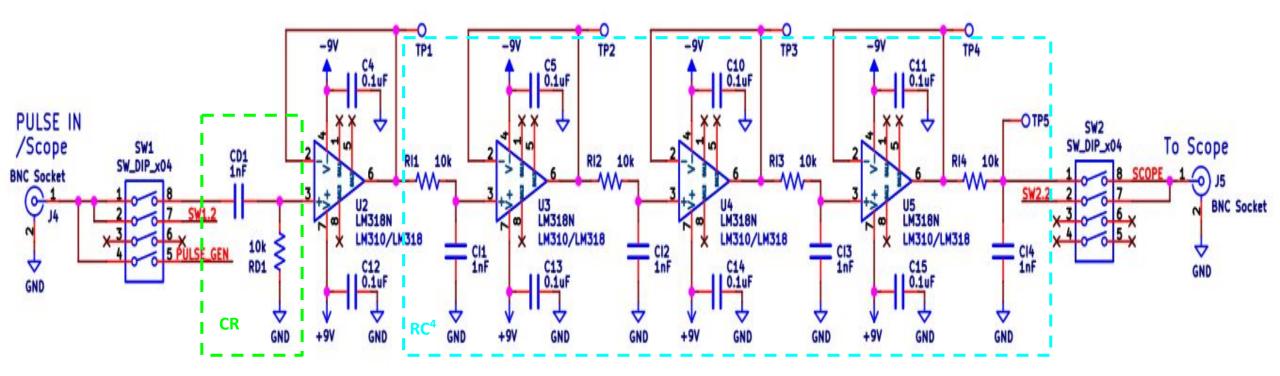

Pole Zero Cancellation

Group 21

Pole Zero Cancellation

Before Pole Zero Cancellation

After Pole Zero Cancellation

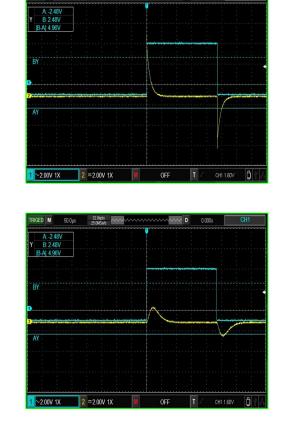

Group 21

ICFA 2023

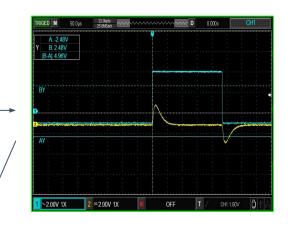
Pole zero cancellation

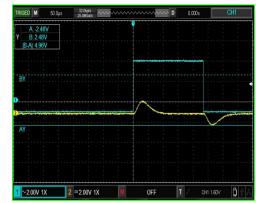
CR's Resistance, kΩ	Undershoot, Volts	Rz required, kΩ
10	0.44	10
20	0.60	20
51	0.68	51
100	0.72	100

Semi-Gaussian Shaper Circuit


Semi-Gaussian Shaper Circuit

32.0kpts ~~~~


RIGED M


- 1. Designed to generate a response that has a shape similar to a semi-Gaussian pulse.
- 2. Implemented using a combination of CR and a series of RC stages

$$V_{out}(t) \propto (\frac{t}{\tau})^n e^{-t/\tau}$$

••••• D 0.000s

Semi-Gaussian Shaper Circuit

Stage No.	Pulse Peak (V)	Left HWHM (µs)	Right HWHM (µs)
1	1.84	2.40	16.80
2	1.36	7.60	20.80
3	1.12	14.00	15.40
4	0.92	21.20	17.00

• Circuit with more stages will generate a response closer to a true Gaussian pulse

Summary and Conclusion

- We have discussed a few pulse shaping and filtering techniques
- They can be used to eliminate the unwanted components and improve the accuracy of the measurements.
- As technology continues to advance, it is likely that these techniques will become even more important and widely used in a range of applications.

Thank You for your kind attention

Questions/Comments ?

Back Up

High pass filter (CR circuit) $v_{in} = \frac{Q}{C} + v_{out}$.

Differentiating both sides

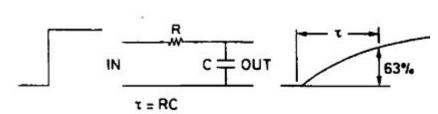
$$\frac{dV_{\rm in}}{dt} = \frac{1}{C} \frac{dQ}{dt} + \frac{dV_{\rm out}}{dt}.$$

The term dQ/dt is just the current, *i*, so that

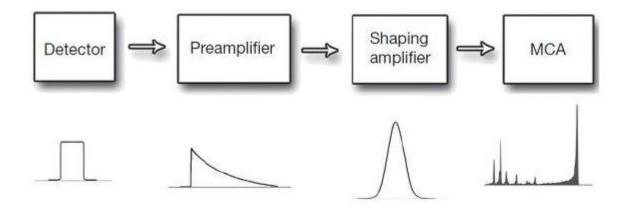
$$\frac{dQ}{dt} = i = \frac{V_{\rm out}}{R}.$$


Equation (14.8) then becomes

$$\frac{dV_{\rm in}}{dt} = \frac{1}{RC} V_{\rm out} + \frac{dV_{\rm out}}{dt}.$$



$$\frac{V_{\rm in}}{dt} \simeq \frac{1}{\tau} V_{\rm out} \,,$$


9

Low pass filter (RC circuit)

CR's τ, μs	RC's τ, μs	E _{out} (V)	тs to pulse peak (µs)	тs to base (µs)
10	10	3.10	11.6	52.8
10	20	2.1		
10	51	1.08	24	164
10	100	0.64		
20	10	4.24		
20	20	3.04		
20	51	1.76	26	206
20	100	1.08		
51	10	5.88		
51	20	4.71	40	234
51	51	3.08		
51	100	2.12		
100	10	6.88		
100	20	5.80	47	448
100	51	4.2		
100	100	3.00		

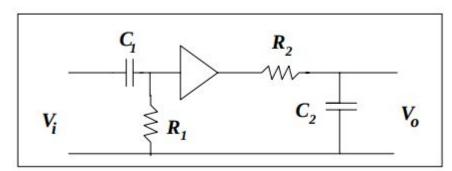


Figure 2.9 A CR-RC shaping network.

The response of this CR-RC network to a step voltage of amplitude V_i is

$$V_0 = \frac{V_i \tau_1}{\tau_1 - \tau_2} (e^{-t/\tau_1} - e^{-t/\tau_2})$$