

Measurement of Muon Lifetime using a Scintillator Detector

Group 5

ICFA23 | 25.02.23

Ashish Narayan, Chandra Prakash, Kunal Gautam

Introduction

Motivation

- **Muons** are second-generation leptons.
- Discovered in cosmic rays by **C. Anderson** and **S.H. Neddermeyer** in 1937.
- Generated when **cosmic rays** collide with molecules in the Earth's **atmosphere**.
- Useful in the study of cosmic rays physics and it is a background for most of the experiments related to **Neutrino Physics** and **Astronomy.**
- Fermi Coupling Constant G_F can be measured from the same process.

Basics of Muon Decay

- Mass of the muon is **105.7 MeV**, about
 200 times the mass of the **electron**.
 m_µ = 105.6583755±0.0000023 MeV*
- Interactions similar to those of the electron.
- The mean lifetime of a muon is about **2.2** microseconds.
 - τ_u = 2.1969811±0.0000022 μs*
- $\mu^{-} \rightarrow e^{-} + \nu_{\mu} + \nu_{e}$
- Probability of decay in time interval from t to t+dt:
 - **dP(t) = \Gamma e^{-\Gamma t} dt**, where $\Gamma = 1/\tau$

*pdg

Objective

- Measure the lifetime of muons, which requires:
 - Detecting the muon
 - Detecting the daughter electron
 - Measuring the time difference between the signals from the two.
- Here, we are only interested in muons that decay inside the plastic scintillator.

Lifetime Measurement

Using Plastic Scintillator Detector

Experimental Setup

- Plastic Scintillator
 25x25x20 cm³
- Photomultiplier Tube (PMT)
- Time-measuring Circuit
- High-voltage
 Supply

Signal from Muon Decay

Signal From Muon Decay

- 8-bit counter with a 10 MHz clock.
 - Range of
 0-25.5 μs
 - \circ Steps of 0.1 μs
- Measure the time-difference between two signals.

TRIGED M	200ns	64.0kpts 500MSa/s	~~~~~~	~~~~~~	D 1.38	Όμs	DISPLAY
V							
Are No pe	a riod	Max 0.00V	DSOBN USB scree	/IP0005.bmp enshot success!			
1 50.00	mV 1X	2 0	FF M	OFF	T	CH1 -48.00n	₩ 🗍

Result

• $N = N_0 e^{-t/\tau} + c$ • $N_0 = 725.987$ • c = 8.176• $\tau = 2.246 \pm 0.078 \ \mu s$

In agreement with the current PDG value.

Group 5 - AN, CP, KG | Muon Lifetime | ICFA23 | 25.02.23

Conclusion

- Once upon a time, there was a muon 🤩
- Suddenly, it decayed into an electron 😱
- We detected both of them with a very cost effective table-top detector 🥳
- And now we are particle physicists

and thanks for all the fish

Standard Model

Photomultiplier Tube (PMT)

Time-measurement Circuit

Group 5 - AN, CP, KG | Muon Lifetime | ICFA23 | 25.02.23

