

#### Micro-controller : Reading temperature of SiPM detector and compensating operating voltage for the same gain

XV ICFA SCHOOL ON INSTRUMENTATION IN ELEMENTARY PARTICLE PHYSICS

Tata Institute of Fundamental Research, Mumbai

Abhishek Bohare<sup>10</sup>, Gayane Ghevondyan<sup>2</sup>, Prabhat Mishra<sup>3</sup>

European Organization for Nuclear Research (CERN), Switzerland, and  $UoE^1$  A.I. Alikhanyan National Science Laboratory,  $Armenia^2$  Bhabha Atomic Research Centre (BARC), and HBNI  $Mumbai^3$ 

February 25, 2023

<sup>0</sup>Group 7 Electronic Address: abhishek.bohare@cern.ch

## **Table of Contents**

#### Introduction

**Experimental Setup** 

**Experimental Observations** 

Results

Conclusion

Backup



・ コ ト ・ 西 ト ・ 田 ト ・ 田 ト

## Introduction



(日) (圖) (E) (E) (E)

- (SiPMs) solid-state photodetectors with high amplification factors
- Enable single-photon detection in various scientific experiments.
- Maintaining stable gain is crucial for SiPM performance, but temperature fluctuations can affect it.
- ▶ Two approaches for temperature control in SiPMs include:
  - Utilizing temperature sensors located near the SiPM sensors to adjust power supply voltage.
  - Using averaged SiPM current as a temperature-sensing signal to adjust bias supply voltage.



Figure of SiPM (image not to scale)

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ・ クタマ





SiPM is an array of microcells





SiPM Detector

<日</th>

ъ

Overvoltage is defined in terms of:

$$V_{\rm OV} = V_{\rm bias} - V_{\rm bd}(T) \tag{1}$$

The Gain of SiPM

$$G(V,T) = \frac{Avalanche_{charge}}{q} = \frac{C_d(V_{bias} - V_{bd})}{q}$$
(2)

Breakdown Voltage

$$V_{bd}(T) = V_{bd}(T_0) - \beta * (T - T_0)$$
 (3)

The Gain of SiPM

$$G(V,T) = \frac{C_d(V_{OV} + V_{bd}(T))}{q} = \frac{C_d((V_{OV} + \beta(T - 25)))}{q}$$
(4)  

$$\overset{( \square > 4 \square >$$

#### Biasing is the process of applying a voltage to the SIPM to control its performance.



**Biasing of SiPM** 

Basic diagram of thermo-compensated SiPM



#### SiPM Detector

**Abhishek Bohare** 

<日</th>

- The temperature coefficient of a SiPM refers to how its performance changes as the temperature changes.
- SiPMs typically have a negative temperature coefficient, which means that their gain (amplification of the signal) decreases as the temperature increases.



#### Temperature coefficient of SiPM

・ 戸 ト ・ ヨ ト ・ ヨ ト

ъ

#### Experimental Setup



SiPM Detector

Abhishek Bohare

- Solid-state photodetector capable of single-photon detection due to its high amplification factor
- ► Lower operating voltage
- Immunity to magnetic fields and ruggedness
- ► Low light levels detection.
- Variation of gain as a function of temperature.



16 channels  $4 \times 4$ , 50 × 50 um pixel size



SiPM board with temperature sensor (S13361-3050AS-04 series SiPM)

・ロト ・ 戸下 ・ ヨト ・ ヨト



SiPM Detector

Abhishek Bohare

ъ





Raspberry Pi4 AND Microcontroller (ATxmega256A3U)

Description of instruments used in the measurement setup



SiPM Detector



Application Control Software



Abhishek Bohare



Web Application to control the Environmental chamber





#### SiPM Detector

## **Experimental Observations**



SiPM Detector

Abhishek Bohare

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - のへで

| ENVIR.   | SiMP/GAPD | Pulse Ampli-        | Bias  | Over  | SiMP/GAI | PDPulse Ampli-    | Bias    | Over    |
|----------|-----------|---------------------|-------|-------|----------|-------------------|---------|---------|
| CHAMBER  | Sensor    | tude (mV) $\pm$     | Volt- | Volt- | Sensor   | tude (mV) $\pm$   | Voltage | Voltage |
| TEMPER-  | Tempera-  | stdev               | age   | age   | Temper-  | stdev             | (mV)    | (mV)    |
| ATURE    | ture      |                     | (mV)  | (mV)  | ature    |                   |         |         |
| (DEGREE  |           |                     |       |       |          |                   |         |         |
| CELCIUS) |           |                     |       |       |          |                   |         |         |
| 30       | 29.6875   | $251.68 {\pm} 6.97$ | 55469 | 2852  | 29.2500  | $244.91 \pm 6.53$ | 55489   | 2883    |
| 20       | 20.6250   | $275.84 \pm 7.40$   | 55474 | 3349  | 19.6250  | $247.03 \pm 6.89$ | 54976   | 2888    |
| 10       | 10.6875   | $306.84 \pm 8.86$   | 55464 | 3832  | 10.000   | $251.37 \pm 7.16$ | 54458   | 2879    |
| 0        | 0.7500    | $340.11 \pm 9,65$   | 55454 | 4320  | 0.5624   | $254.04 \pm 7.15$ | 53975   | 2922    |
| -10      | -8.8750   | $366.64 \pm 10.64$  | 55464 | 4819  | -9.1250  | $257.17 \pm 7.38$ | 53472   | 2921    |

Left Data is taken with OFF Temperature Compensation right data is taken with ON in the table below.



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

## Results



<ロト <問 > < 三 > < 三 > - 三 -

 An important consideration for optimizing SiPM performance





Abhishek Bohare

イロト イボト イヨト イヨト





# SiPM/GAPD Sensor Temperature (°C) vs Over Voltage (mV) using Environment Chamber

🔍 tifr 🏾 🎯

SiPM Detector

**Abhishek Bohare** 

## Conclusion



SiPM Detector

- ▶ For a fixed bias voltage, the gain of a SiPM changes linearly with temperature
- ▶ Breakdown voltage varies linearly with temperature
- ► Adjusting the bias voltage with the help of bias control and Temperature compensation circuit
- ▶ Overvoltage remains constant which eliminates gain-temperature dependence.



#### References

Kaplan A., et al. Nucl. Instrum. Methods Phys. Res. A, 610 (1) (2009), pp. 114-117.

Licciulli F., Marzocca C. IEEE Trans. Nucl. Sci., 62 (1) (2015), pp. 228-235.

Silicon Photomultiplier Operation, Performance Possible Applications https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/ static/hc/resources/W0003/sipm\_webinar\_1.10.pdf



・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ・ クタマ

Thank you for listening!!



・ 同 ト ・ ヨ ト ・ ヨ ト

## Backup



◆□▶ ◆圖▶ ◆理▶ ◆理▶ 「理」



All of the microcells are connected in parallel.



・ 同 ト ・ ヨ ト ・ ヨ ト

#### SiPM operation





Example of single-photoelectron waveform (1 p.e.)

Gain = area under the curve in electrons



・ 同 ト ・ ヨ ト ・ ヨ ト

#### Photon detection efficiency



- Photon detection efficiency (PDE) is a probability that an incident photon is detected. It depends on:
  - wavelength
  - overvoltage
  - microcell size

Peak PDE 20% - 50%

4 ∃ →

#### Gain



• Gain of SiPM is comparable to that of a PMT.

Excess noise very low:  $F \sim 1.1$ , mostly due to crosstalk

 Gain depends linearly on overvoltage Gain versus temperature

# Does gain of an SiPM depend on temperature?

<u>Yes</u> – if the bias voltage is fixed





Gain versus temperature

# Does gain of an SiPM depend on temperature?

 $\underline{No}$  – if the overvoltage is fixed  $\underbrace{\mathbb{S}}_{120\%}$ 



