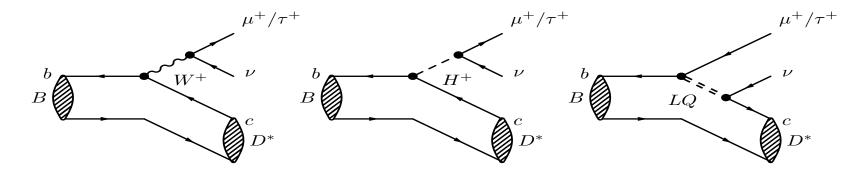

R(D) and R(D*) measurements at


Concezio Bozzi, CERN & INFN Ferrara On behalf of the LHCb collaboration

Semi-tauonic decays

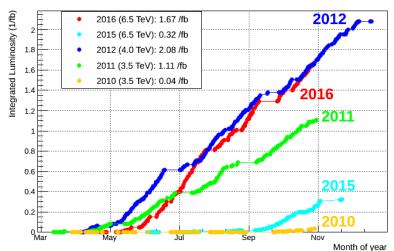
- $B \rightarrow D(*)\tau v$ are tree level decays mediated by a W in SM
- Lepton universality in SM, might be broken by mass-dependent couplings
- → Probe SM extensions to models with e.g. enlarged Higgs sector, leptoquarks

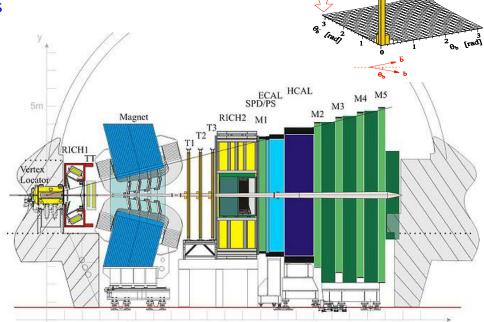
→ Test SM by measuring ratios theoretically and experimentally cleaner

$$R(D) = \frac{\Gamma(\overline{B} \to D\tau \nu)}{\Gamma(\overline{B} \to D\ell \nu)}$$

$$R(D) = \frac{\Gamma(\overline{B} \to D\tau\nu)}{\Gamma(\overline{B} \to D\ell\nu)} \qquad R(D^*) = \frac{\Gamma(\overline{B} \to D^*\tau\nu)}{\Gamma(\overline{B} \to D^*\ell\nu)}$$

→ Renewed interest in this area, after anomalous result of Babar (next talk)

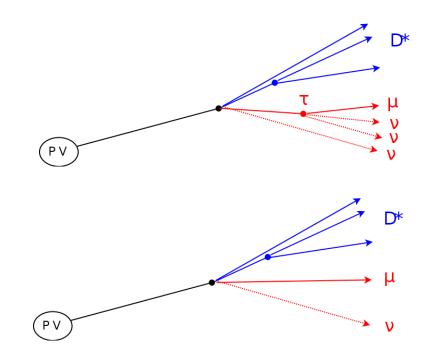

PRL109, 101802 (2012)


The experiment

Forward spectrometer optimised for heavy flavour physics at the LHC

- Large acceptance 2<η<5
- Low trigger thresholds
- Precise vertexing
- Efficient particle identification
- Running at a constant luminosity of $4x10^{32}$ cm⁻²s⁻¹, $<\mu>^{-}1.7$, 4x design

LHCb Integrated Luminosity in pp collisions 2010-2016

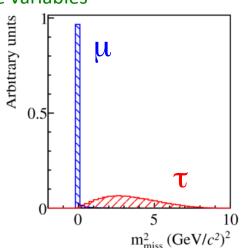

- Large boost (B mesons flight ~1cm)
- Huge production cross section (~300μb)
- Small S/B ratio

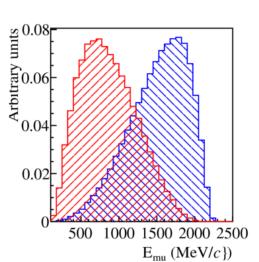
Experimental challenges

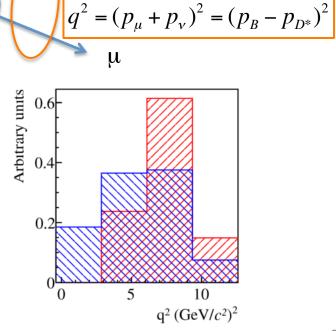
- Neutrinos in the final state

 unconstrained kinematics
 - Extra particles in the event \rightarrow large backgrounds from partially reconstructed B decays
 - − B \rightarrow D* $\mu\nu$, B \rightarrow D** $\mu\nu$, B \rightarrow D*D($\rightarrow \mu$ X)X ...
 - − B \rightarrow D*πππX, B \rightarrow D*D(\rightarrow πππX)X ...

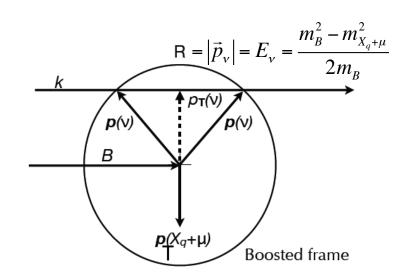
- Same final state particles
- Favourable, well-measured BF for τ decay (17.41+/- 0.04)%

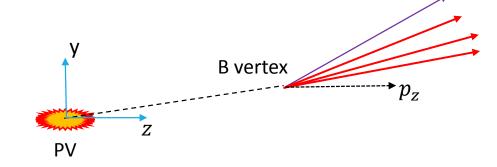

 $|m_{miss}^2 = (p_B - p_{D^*\mu})^2|$


R(D*) measurement with $\tau \rightarrow \mu \nu_{\tau} \nu_{\mu}$

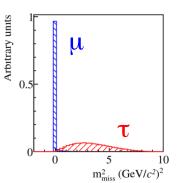

 B^0

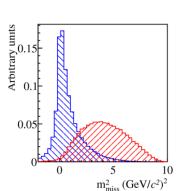
D*

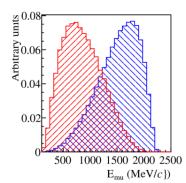

- Same final state particles
- Favourable, well-measured BF for τ decay (17.41+/- 0.04)%
- Signal B \rightarrow D* $\tau \nu$ and normalization B \rightarrow D* $\mu \nu$ best separated through rest-frame variables

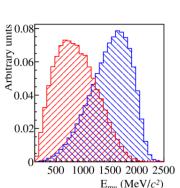


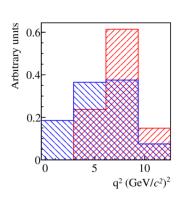
- Same final state particles
- Favourable, well-measured BF for τ decay (17.41+/- 0.04)%
- Signal B→D*τν and normalization
 B→D*μν best separated through restframe variables
- Using well-measured B flight direction gives momentum with 2-fold ambiguity

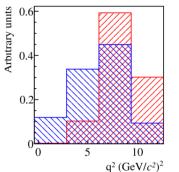


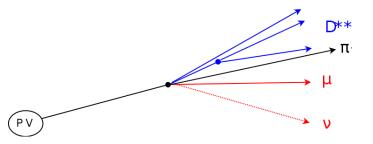

- Same final state particles
- Favourable, well-measured BF for τ decay (17.41+/- 0.04)%
- Signal B \rightarrow D* $\tau \nu$ and normalization B \rightarrow D* $\mu \nu$ best separated through rest-frame variables
- Using well-measured B flight direction gives momentum with 2-fold ambiguity
- Avoid ambiguity by assuming B boost along z >> boost of decay products in the rest frame

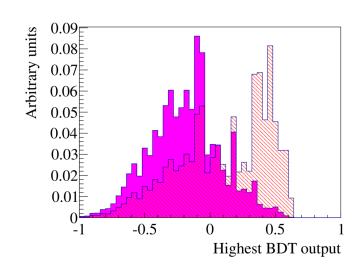



$$(\gamma \beta_Z)_{\bar{B}} = (\gamma \beta_Z)_{D^* \mu} \implies (p_Z)_{\bar{B}} = \frac{m_B}{m(D^* \mu)} (p_Z)_{D^* \mu}$$

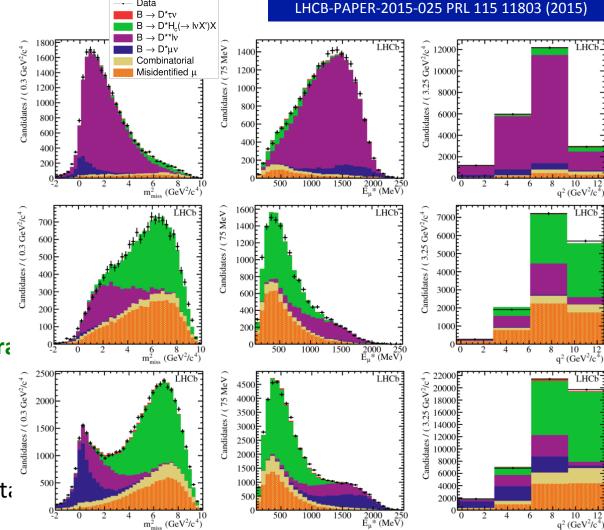

- Same final state particles
- Favourable, well-measured BF for τ decay (17.41+/- 0.04)%
- Signal B \rightarrow D* τv and normalization $B \rightarrow D^* \mu \nu$ best separated through restframe variables
- Using well-measured B flight direction gives momentum with 2-fold ambiguity
- Avoid ambiguity by assuming B boost along z >> boost of decay products in the rest frame
- 18% resolution on B momentum approximation preserves differences between signal, normalization and





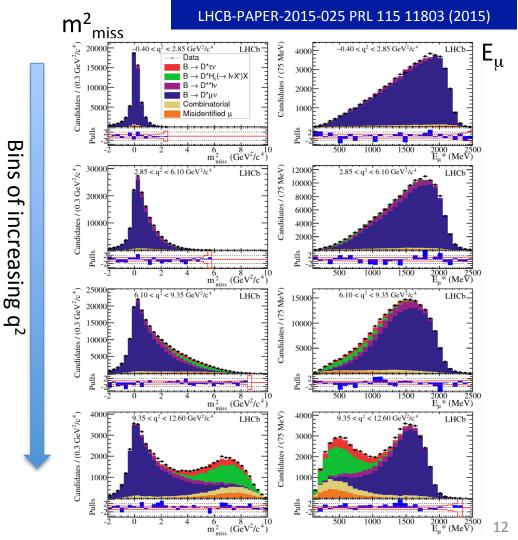


Background reduction


- Scan over every reconstructed track and assess compatibility with $D^{*+} \mu^-$ vertex
 - vertex quality with PV and SV, change in displacement of SV, $p_{\rm T}$, alignment of track and D^{*+} μ^{-} momenta
- Build BDT to classify tracks as "SV-like" or "PV-like"
- Cut on most SV-like track below threshold to select signal-enriched sample.
 - 70% of events with 1 additional slow pion are rejected
- Reverse cut to get background-enriched samples
 - One or two extra pions (D*μπ, D*μππ) as proxy for
 B→D**μν
 - − kaon PID (D* μ K) as proxy for B \rightarrow D*H_c($\rightarrow \mu\nu$ X')X

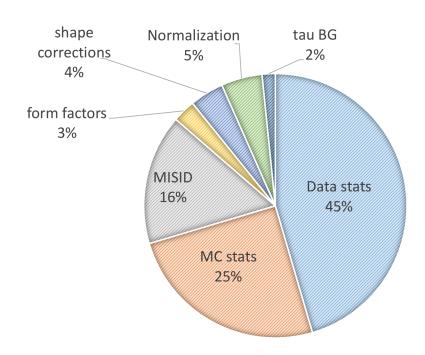
Background strategy

- All major backgrounds modelled using control samples in data
- Isolation MVA gives one or two extra tracks → sample enhanced in B → D**µv
- Isolation MVA gives an extra track with loose kaon ID → sample enhanced in B → D*DX
- Combinatorial or misID backgrounds taken from data

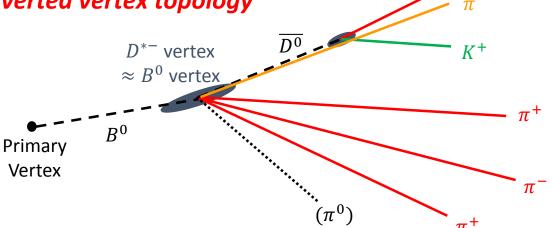


Fit results

- No additional particles
- 3D fit to m_{miss}^2 , E_{μ} , in 4 bins of q^2 .
- Simultaneously fit 3 control regions defined by isolation criteria
- Signal yield: 16500 events


$$R(D^*) = 0.336 \pm 0.027 \pm 0.030$$

- In agreement with Babar and Belle
- 2.1 σ higher than the SM


R(D*): Error budget

- Total uncertainty at the 10% level
- Largest systematics from MC statistics and non-muon component
- They can both be reduced by
 - generating more MC samples
 - improved methods, smarter use of PID
- Expect to reduce the total uncertainty to the levels of
 - 4% with the addition of Run2 data and the $\tau \rightarrow 3\pi(\pi^0)$ decay
 - 2% by using also Run3 data and the upgraded LHCb detector

$B \rightarrow D^* \tau \nu$, with $\tau \rightarrow 3\pi(\pi^0)$

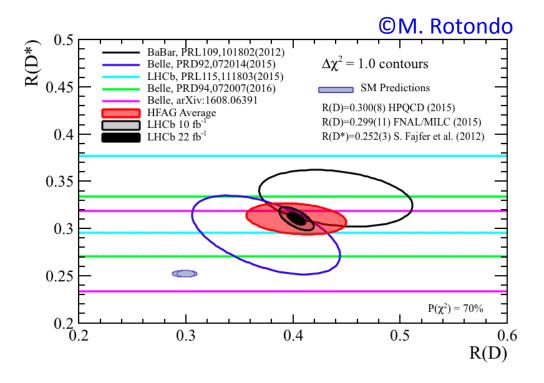
- Doing semileptonic physics without leptons in the final state!
- The $B \rightarrow D^*\tau \nu$ decay, with $\tau \rightarrow 3\pi(\pi^0)$ leads to a $D^*3\pi(X)$ final state
- Nothing is more common than this final state in a typical B decay
- $Br(B \rightarrow D*3\pi(X)) / Br(B \rightarrow D*\tau v; \tau \rightarrow 3\pi(\pi^0)v)_{SM}^{\bullet}$ 100
- Suppress with inverted vertex topology

$B \rightarrow D^* \tau \nu$, with $\tau \rightarrow 3\pi(\pi^0)$

- Doing semileptonic physics without leptons in the final state!
- The $B \rightarrow D^*\tau \nu$ decay, with $\tau \rightarrow 3\pi(\pi^0)$ leads to a $D^*3\pi(X)$ final state
- Nothing is more common than this final state in a typical B decay
- $Br(B \rightarrow D*3\pi(X)) / Br(B \rightarrow D*\tau v; \tau \rightarrow 3\pi(\pi^0)v)_{SM}^{\bullet}$ 100 Suppress with inverted vertex topology D^{*-} vertex $\approx B^0$ vertex ν_{τ} **Primary** Vertex A 5 σ requirement kills the $D*3\pi(X)$ background by >10⁴

15

$B \rightarrow D^* \tau \nu$, with $\tau \rightarrow 3\pi(\pi^0)$


- Doing semileptonic physics without leptons in the final state!
- The $B \rightarrow D^*\tau \nu$ decay, with $\tau \rightarrow 3\pi(\pi^0)$ leads to a $D^*3\pi(X)$ final state
- Nothing is more common than this final state in a typical B decay
- $Br(B \rightarrow D *3\pi(X)) / Br(B \rightarrow D *\tau v; \tau \rightarrow 3\pi(\pi^0) v)_{SM} \sim 100$
- Suppress with inverted vertex topology
- A 5 σ requirement kills the $D*3\pi(X)$ background by >10⁴
- Remaining background from B^0 decays where the 3π vertex is transported away by a charm carrier: D_s , D^+ or D^0 (in order of importance)
- $Br(B \rightarrow D^*'D'; 'D' \rightarrow 3\pi) / Br(B \rightarrow D^*\tau v; \tau \rightarrow 3\pi(\pi^0)v)_{SM}^{\sim}10$
- LHCb has **good 'weapons'** to suppress this background: Partial background reconstruction, dynamics of 2π , 3π system, track and neutral isolation

Other decays?

- $R(D^{*+})$ measurement chosen as proof-of-concept due to simpler feed-downs and structure, not any limitations in purity or technique
- R(D⁰) requires statistical separation of D* feed-down; expect x5 more events
- $O(10^{4-5})$ semileptonic decays into exclusive narrow p-wave D mesons would make $R(D_1)$, $R(D_2^*)$ also possible
- LHCb has unique access to B_s , B_c , and Λ_b production
 - $R(D_s)$: $B_s \rightarrow D_s \tau v$ is challenging, many excited states with feed-down emitting unreconstructed neutrals
 - R(J/ψ): B_c→J/ψτν has spectacular signature, and "high" BF(J/ψ→μμ) could compensate lower B_c production rate
 - $R(\Lambda_c^{(*)})$: $\Lambda_b \rightarrow \Lambda_c^{(*)} \tau v$ has a different spin structure \rightarrow different physics sensitivity, would help discriminate tensor contributions
- What about charmless decays? E.g. $B \rightarrow pp\tau v$, $\Lambda_b \rightarrow p\tau v$...

Conclusion

- First ever measurement of a b→τ decay at a hadron collider
- R(D*) is the beginning of a vast exploration
 - Several channels
 - Two τ decay modes
- The addition of Run2 and Run3 data will eventually lead to samples of O(10⁵-10⁶) events
 - Not only R, but also angles, polarizations, form factors...
 - ...and charmless semi-tauonic decays!
- LHCb will compete with final Belle-II measurements

18