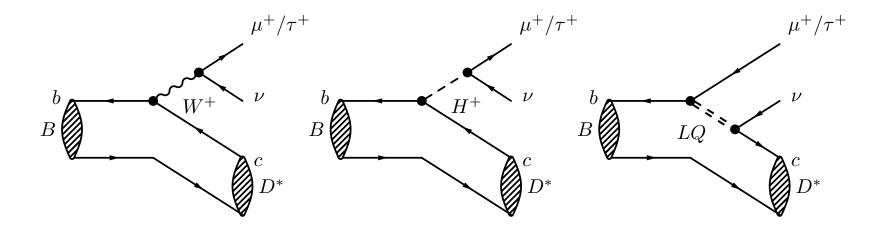


Concezio Bozzi, CERN & INFN Ferrara On behalf of the LHCb collaboration


CKM2016

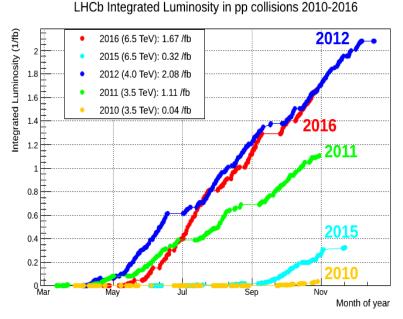
9th International Workshop on the CKM Unitarity Triangle

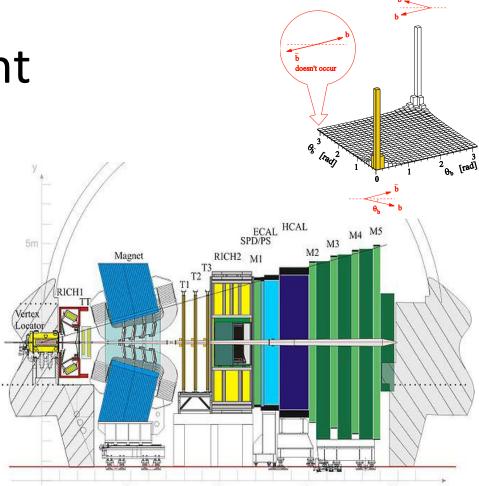
TIFR, Mumbai Nov. 28 – Dec. 2, 2016

Semi-tauonic decays

- $B \rightarrow D(*)\tau v$ are tree level decays mediated by a W in SM
- Lepton universality in SM, might be broken by mass-dependent couplings
- → Probe SM extensions to models with e.g. enlarged Higgs sector, leptoquarks

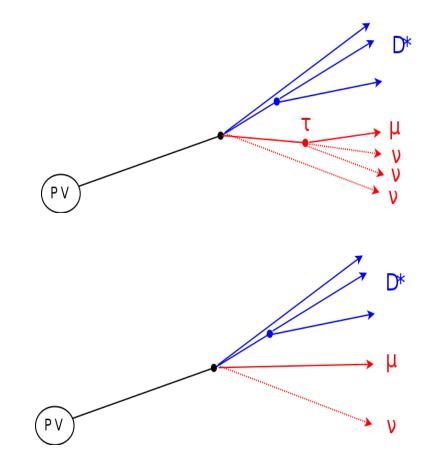
→ Test SM by measuring ratios
theoretically and experimentally cleaner
$$R(D) = \frac{\Gamma(\overline{B} \to D\tau\nu)}{\Gamma(\overline{B} \to D\ell\nu)} \qquad R(D^*) = \frac{\Gamma(\overline{B} \to D^*\tau\nu)}{\Gamma(\overline{B} \to D^*\ell\nu)}$$


 \rightarrow Renewed interest in this area, after anomalous result of Babar (next talk)

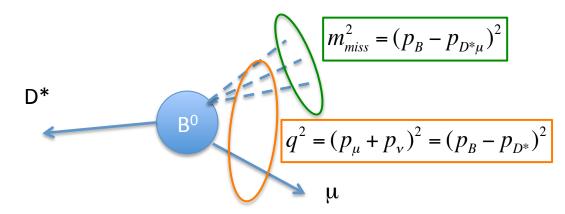

PRL109, 101802 (2012)

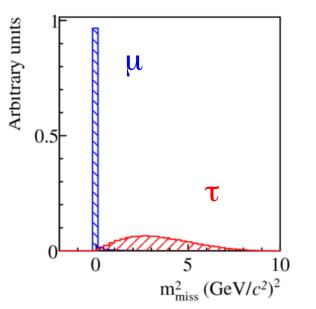
Forward spectrometer optimised for heavy flavour physics at the LHC

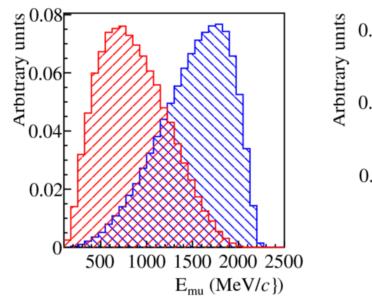
- Large acceptance 2<η<5
- Low trigger thresholds
- Precise vertexing
- Efficient particle identification
- Running at a constant luminosity of 4x10³² cm⁻²s⁻¹, <μ>~1.7, 4x design

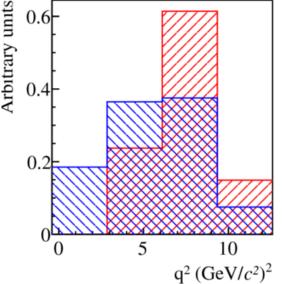


- Large boost (B mesons flight ~1cm)
- Huge production cross section (~300µb)
- Small S/B ratio

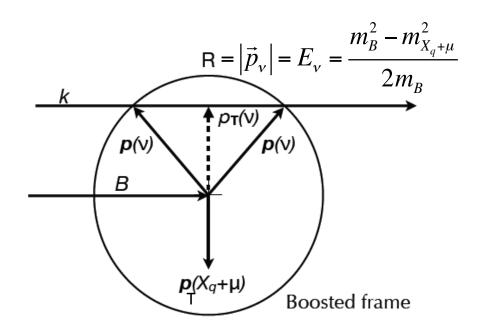

Experimental challenges

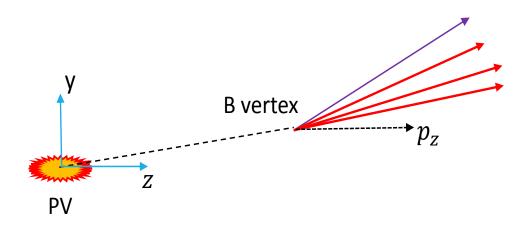

- Neutrinos in the final state \rightarrow unconstrained kinematics
- Extra particles in the event → large backgrounds from partially reconstructed B decays
 - $B \rightarrow D^*\mu\nu$, $B \rightarrow D^{**}\mu\nu$, $B \rightarrow D^*D(\rightarrow \mu X)X$...
 - B → D^{*}πππX, B → D^{*}D(→ πππX)X ...


- Same final state particles
- Favourable, well-measured BF for τ decay (17.41+/- 0.04)%

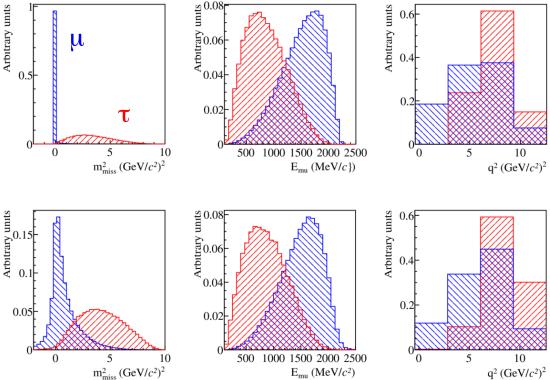


- Same final state particles
- Favourable, well-measured BF for τ decay (17.41+/- 0.04)%
- Signal B→D*τν and normalization
 B→D*μν best separated through rest-frame variables

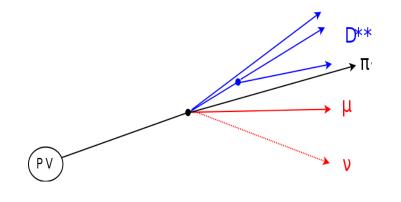


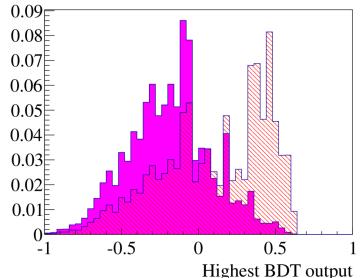


- Same final state particles
- Favourable, well-measured BF for τ decay (17.41+/- 0.04)%
- Signal B→D*τν and normalization
 B→D*μν best separated through rest-frame variables
- Using well-measured B flight direction gives momentum with 2fold ambiguity


- Same final state particles
- Favourable, well-measured BF for τ decay (17.41+/- 0.04)%
- Signal B→D*τν and normalization
 B→D*μν best separated through rest-frame variables
- Using well-measured B flight direction gives momentum with 2fold ambiguity
- Avoid ambiguity by assuming B boost along z >> boost of decay products in the rest frame

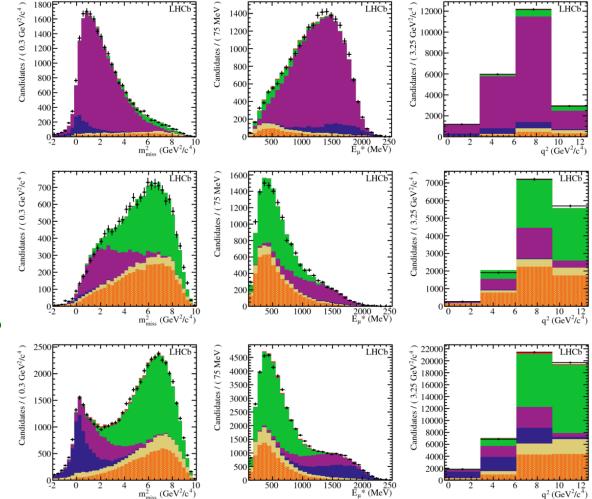
 $(\gamma \beta_z)_{\bar{B}} = (\gamma \beta_z)_{D^* \mu} \implies (p_z)_{\bar{B}} = \frac{m_B}{m(D^* \mu)} (p_z)_{D^* \mu}$


- Same final state particles
- Favourable, well-measured BF for τ decay (17.41+/- 0.04)%
- Signal B→D*τν and normalization
 B→D*μν best separated through rest-frame variables
- Using well-measured B flight direction gives momentum with 2fold ambiguity
- Avoid ambiguity by assuming B boost along z >> boost of decay products in the rest frame
- 18% resolution on B momentum approximation preserves differences between signal, normalization and backgrounds


C. Bozzi - R(D(*)) at LHCb - CKM2016

Background reduction

- Scan over every reconstructed track and assess compatibility with $D^{*+} \mu^{-}$ vertex
 - vertex quality with PV and SV, change in displacement of SV, $p_{\rm T}$, alignment of track and D^{*+} μ^{-} momenta
- Build BDT to classify tracks as "SV-like" or "PV-like"
- Cut on most SV-like track below threshold to select signal-enriched sample.
 70% of events with 1 additional slow pion are
 - 70% of events with 1 additional slow pion are rejected
- Reverse cut to get background-enriched samples
 - One or two extra pions (D*µπ, D*µππ) as proxy for
 B→D**µν
 - − kaon PID (D* μ K) as proxy for B→D*H_c(→ $\mu\nu$ X')X

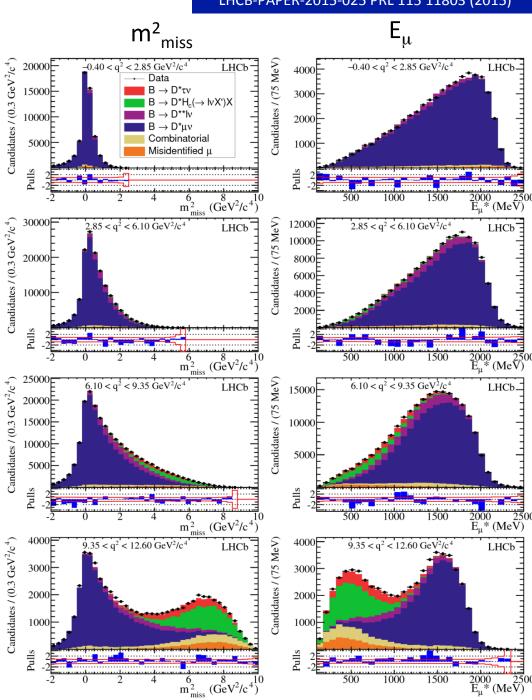

Data B \rightarrow D^{*}tv

 $\rightarrow D^*H_c(\rightarrow hvX')X$

 $\begin{array}{l} B \rightarrow D^{**} l \nu \\ B \rightarrow D^{*} \mu \nu \\ Combinatorial \\ Misidentified \ \mu \end{array}$

Background strategy

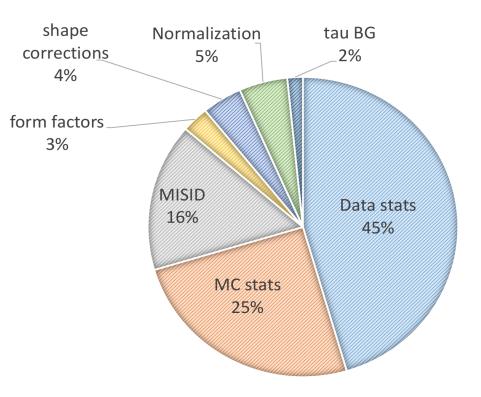
- All major backgrounds modelled using control samples in data
- Isolation MVA gives one or two extra tracks→ sample enhanced in B → D^{**}µv
- Isolation MVA gives an extra track with loose kaon ID → sample enhanced in B → D*DX
- Combinatorial or misID backgrounds taken from data


LHCB-PAPER-2015-025 PRL 115 11803 (2015)

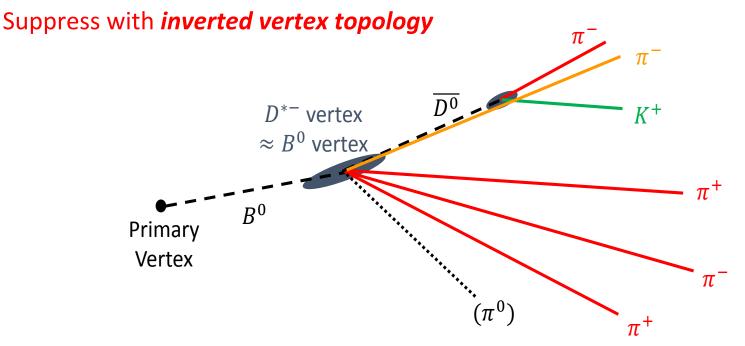
Fit results

- No additional particles
- 3D fit to m_{miss}^2 , E_{μ} , in 4 bins of q^2 .
- Simultaneously fit 3 control regions defined by isolation criteria
- Signal yield: 16500 events

 $R(D^*) = 0.336 \pm 0.027 \pm 0.030$

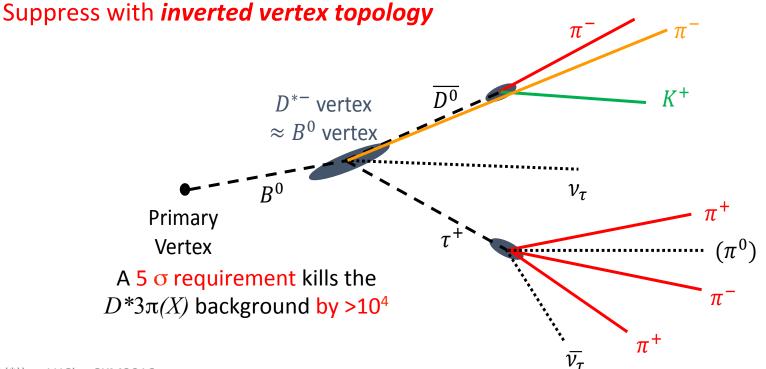

- In agreement with Babar and Belle
- 2.1 σ higher than the SM

C. Bozzi - R(D(*)) at LHCb - CKM2016


R(D*): Error budget

- Total uncertainty at the 10% level
- Largest systematics from MC statistics and non-muon component
- They can both be reduced by
 - generating more MC samples
 - improved methods, smarter use of PID
- Expect to reduce the total uncertainty to the levels of
 - 4% with the addition of Run2 data and the $\tau \rightarrow 3\pi(\pi^0)$ decay
 - 2% by using also Run3 data and the upgraded LHCb detector

$B \rightarrow D^* \tau \nu$, with $\tau \rightarrow 3\pi(\pi^0)$


- Doing semileptonic physics without leptons in the final state!
- The $B \rightarrow D^* \tau \nu$ decay, with $\tau \rightarrow 3\pi(\pi^0)$ leads to a $D^* 3\pi(X)$ final state
- Nothing is more common than this final state in a typical B decay
- $Br(B \rightarrow D^* 3\pi(X)) / Br(B \rightarrow D^* \tau \nu; \tau \rightarrow 3\pi(\pi^0) \nu)_{SM} \sim 100$

۲

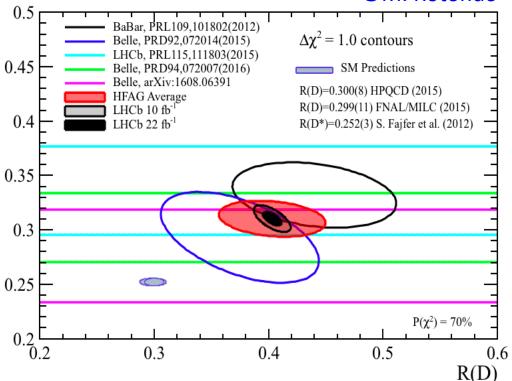
$B \rightarrow D^* \tau \nu$, with $\tau \rightarrow 3\pi(\pi^0)$

- Doing semileptonic physics without leptons in the final state!
- The $B \rightarrow D^* \tau \nu$ decay, with $\tau \rightarrow 3\pi(\pi^0)$ leads to a $D^* 3\pi(X)$ final state
- Nothing is more common than this final state in a typical B decay
- $Br(B \rightarrow D^* 3\pi(X)) / Br(B \rightarrow D^* \tau v; \tau \rightarrow 3\pi(\pi^0) v)_{SM} \sim 100$

۲

$B \rightarrow D^* \tau \nu$, with $\tau \rightarrow 3\pi(\pi^0)$

- Doing semileptonic physics without leptons in the final state!
- The $B \rightarrow D^* \tau \nu$ decay, with $\tau \rightarrow 3\pi(\pi^0)$ leads to a $D^* 3\pi(X)$ final state
- Nothing is more common than this final state in a typical B decay
- $Br(B \rightarrow D^* 3\pi(X)) / Br(B \rightarrow D^* \tau \nu; \tau \rightarrow 3\pi(\pi^0) \nu)_{SM} \sim 100$
- Suppress with *inverted vertex topology*
- A 5 σ requirement kills the $D^*3\pi(X)$ background by >10⁴
- Remaining background from B^0 decays where the 3π vertex is transported away by a charm carrier: D_s , D^+ or D^0 (in order of importance)
- $Br(B \rightarrow D^*'D'; D' \rightarrow 3\pi) / Br(B \rightarrow D^*\tau v; \tau \rightarrow 3\pi(\pi^0)v)_{SM} \sim 10$
- LHCb has **good 'weapons'** to suppress this background: Partial background reconstruction, dynamics of 2π , 3π system, track and neutral isolation


Other decays?

- R(D*+) measurement chosen as proof-of-concept due to simpler feed-downs and structure, not any limitations in purity or technique
- R(D⁰) requires statistical separation of D* feed-down; expect x5 more events
- O(10⁴⁻⁵) semileptonic decays into exclusive narrow p-wave D mesons would make R(D₁), R(D₂^{*}) also possible
- LHCb has unique access to B_s , B_c , and Λ_b production
 - $R(D_s): B_s \rightarrow D_s \tau v$ is challenging, many excited states with feed-down emitting unreconstructed neutrals
 - $R(J/\psi)$: $B_c \rightarrow J/\psi \tau v$ has spectacular signature, and "high" BF(J/ $\psi \rightarrow \mu \mu$) could compensate lower B_c production rate
 - $R(\Lambda_c^{(*)}): \Lambda_b \rightarrow \Lambda_c^{(*)} \tau v$ has a different spin structure \rightarrow different physics sensitivity, would help discriminate tensor contributions
- What about charmless decays? E.g. $B \rightarrow pp\tau v$, $\Lambda_b \rightarrow p\tau v$...

Conclusion

 $R(D^*)$

- First ever measurement of a
 b→τ decay at a hadron collider
- R(D*) is the beginning of a vast exploration
 - Several channels
 - Two τ decay modes
- The addition of Run2 and Run3 data will eventually lead to samples of O(10⁵-10⁶) events
 - Not only R, but also angles, polarizations, form factors...
 - …and charmless semi-tauonic decays!
- LHCb will compete with final Belle-II measurements

©M. Rotondo