(-) School of Mathematics Tata Institute of Fundamental Research

03 June, 2022

NOTICE
Speaker : Andrei Lavrenov
Affiliation : St. Petersburg State University, Russia
Title : Different definitions of unstable orthogonal K_{2}
Date \& Time : Friday, 17 June, 2022 at 2.00 p.m.
Venue : Lecture Room (AG-77)

Abstract

Many approaches to higher algebraic K-theory and Hermitian K-theory are known. For example, stable Quillen's groups $\mathrm{K}_{n}(R)$ (defined e.g. via the + -construction) and stable Karoubi-Villamayor groups $\mathrm{KV}_{n}(R)$ (defined via standard simplicial scheme) coincide for $n \geq 1$ if R happens to be a regular ring. These theories use infinite-dimensional algebraic groups such as $\mathrm{GL}_{\infty}(R)$ in their definition. In this talk we will discuss an unstable analogue of such result for the functor K_{2}.

The interest for the unstable Quillen's K_{2}-groups, in particular, comes from the fact that they appear in Steinberg's presentation of the groups of points of algebraic groups by means of generators and relations. On the other hand, Karoubi-Villamayor K_{2}-groups can be interpreted as fundamental groups in the unstable \mathbb{A}^{1}-homotopy category $\mathscr{H}_{\bullet}(k)$ of F. Morel and V. Voevodsky (using results of A. Asok, M. Hoyois and M. Wendt). Conjecturally, for any split simple group $G=\mathrm{G}(\Phi, R)$ with $\operatorname{rk} \Phi \geq 5$ and regular ring R holds an equality $$
\begin{equation*} \pi_{1}^{\mathbb{A}^{1}}(G)(R)=\pi_{2}\left(\mathrm{~B} G^{+}\right) \tag{1} \end{equation*}
$$

We remark that the Nisnevich localization $\mathrm{a}_{\mathrm{Nis}} \pi_{1}^{\mathbb{A}^{1}}(G)(R)$ of \mathbb{A}^{1}-fundamental groups was recently computed by F. Morel and A. Sawant, and coincides with the unramified Milnor $\underline{K}_{2}^{\mathrm{M}}$ or Milnor-Witt $\underline{\mathrm{K}}_{2}^{\mathrm{MW}}$ sheaf depending on Φ.

Conjecture (1) is parallel to the Serre's problem and Bass-Quillen conjecture, and we adopt Quillen-Suslin and Lindel-Popesque results for this case. In particular, for $\Phi=A_{l}, D_{l}$ this conjecture is already proven for a regular ring R containing a field k of characteristic $\neq 2, l \geq 7$.

As a corollary, one can obtain the following results.

- The group $\operatorname{Spin}_{2 l}\left(k\left[t_{1}, \ldots, t_{n}\right]\right)$ admits an explicit presentation by means of generators and relation (generalizing Steinberg's presentation in the case $n=0$).
- $\mathrm{H}_{2}\left(\operatorname{Spin}_{2 l}\left(k\left[t_{1}, \ldots, t_{n}\right]\right), \mathbb{Z}\right)=\mathrm{K}_{2}^{\mathrm{M}}(k)$.
- $\mathrm{H}_{2}\left(\mathrm{O}_{2 l}(R[t]), \mathbb{Z}\right)=\mathrm{H}_{2}\left(\mathrm{O}_{2 l}(R), \mathbb{Z}\right)$.

The talk is based on my joint work with Sergey Sinchuk and Egor Voronetsky.

