

03 June, 2022

NOTICE

Speaker	:	Andrei Lavrenov
Affiliation	:	St. Petersburg State University, Russia
Title	:	Different definitions of unstable orthogonal K_2
Date & Time	:	Friday, 17 June, 2022 at 2.00 p.m.
Venue	:	Lecture Room (AG-77)

Abstract

Many approaches to higher algebraic K-theory and Hermitian K-theory are known. For example, stable Quillen's groups $K_n(R)$ (defined e.g. via the +-construction) and stable Karoubi–Villamayor groups $KV_n(R)$ (defined via standard simplicial scheme) coincide for $n \ge 1$ if R happens to be a regular ring. These theories use infinite-dimensional algebraic groups such as $GL_{\infty}(R)$ in their definition. In this talk we will discuss an *unstable* analogue of such result for the functor K_2 .

The interest for the unstable Quillen's K₂-groups, in particular, comes from the fact that they appear in Steinberg's presentation of the groups of points of algebraic groups by means of generators and relations. On the other hand, Karoubi–Villamayor K₂-groups can be interpreted as fundamental groups in the unstable \mathbb{A}^1 -homotopy category $\mathscr{H}_{\bullet}(k)$ of F. Morel and V. Voevodsky (using results of A. Asok, M. Hoyois and M. Wendt). Conjecturally, for any split simple group $G = G(\Phi, R)$ with rk $\Phi \ge 5$ and regular ring R holds an equality

$$\pi_1^{\mathbb{A}^1}(G)(R) = \pi_2(\mathbb{B}G^+). \tag{1}$$

We remark that the Nisnevich localization $a_{Nis} \pi_1^{\mathbb{A}^1}(G)(R)$ of \mathbb{A}^1 -fundamental groups was recently computed by F. Morel and A. Sawant, and coincides with the unramified Milnor \underline{K}_2^M or Milnor-Witt \underline{K}_2^{MW} sheaf depending on Φ .

Conjecture (1) is parallel to the Serre's problem and Bass–Quillen conjecture, and we adopt Quillen–Suslin and Lindel–Popesque results for this case. In particular, for $\Phi = A_l$, D_l this conjecture is already proven for a regular ring *R* containing a field *k* of characteristic $\neq 2$, $l \geq 7$.

As a corollary, one can obtain the following results.

- The group $\text{Spin}_{2l}(k[t_1, \dots, t_n])$ admits an explicit presentation by means of generators and relation (generalizing Steinberg's presentation in the case n = 0).
- $\operatorname{H}_2(\operatorname{Spin}_{2l}(k[t_1,\ldots,t_n]),\mathbb{Z}) = \operatorname{K}_2^{\operatorname{M}}(k).$
- $H_2(O_{2l}(R[t]),\mathbb{Z}) = H_2(O_{2l}(R),\mathbb{Z}).$

The talk is based on my joint work with Sergey Sinchuk and Egor Voronetsky.

Milind Pilankar