
Shell Scripting

Santosh Kyadari (santoshk@tifr.res.in)

--CCCF

Date: 8 -11 -2019

mailto:santoshk@tifr.res.in

shell scripts

◼ Text files that contain sequences of UNIX commands ,

created by a text editor

◼ No compiler required to run a shell script, because the

UNIX shell acts as an interpreter when reading script

files

◼ After you create a shell script, you simply tell the OS that

the file is a program that can be executed, by using the

chmod command to change the files’ mode to be

executable
/bin/sh ./myscript.sh

./myscript.sh # If execution permissions are set to file

Variables

 We can use variables as in any programming languages.

Their values are always stored as strings, but there are

mathematical operators in the shell language that will

convert variables to numbers for calculations.

 We have no need to declare a variable, just assigning a

value to its reference will create it.

Variables

 Example
 #!/bin/sh

STR="Good Morning"

echo "STR Variable $STR"

SINGLEQUOTE='Hi, $STR'

echo "SINGLEQUOTE variable $SINGLEQUOTE"

NUM=365

DATESTAMP=`date`

echo "NUM $NUM DATESTAMP $DATESTAMP"

 Line 2 creates a variable called STR and assigns the string

"Good Morning" to it. Then the value of this variable is

retrieved by putting the '$' in at the beginning.

Quote Characters (double quotes)

There are three different quote characters with different
behaviour. These are:

“ : double quote, weak quote. If a string is enclosed in “ ” the
references to variables (i.e $variable) are replaced by their
values. Also back-quote and escape \ characters are treated
specially.

$ var=“test string”

$ newvar=“Value of var is $var”

$ echo $newvar

Value of var is test string

single quote

‘ : single quote, strong quote. Everything inside single quotes are
taken literally, nothing is treated as special.

$ var=’test string’

$ newvar=’Value of var is $var’

$ echo $newvar

Value of var is $var

back quote

` : back quote. A string enclosed as such is treated as a command
and the shell attempts to execute it. If the execution is
successful the primary output from the command replaces the
string.

Example:

$ echo "Today is: `date`“

Today is: Tue Aug 28 20:32:10 IST 2012

echo

echo command is well appreciated when trying to debug scripts.

Syntax : echo {options} string

Options: -e : expand \ (back-slash) special characters

-n : do not output a new-line at the end.

String can be a “weakly quoted” or a ‘strongly quoted’ string.

In the weakly quoted strings the references to variables are replaced

by the value of those variables before the output.

As well as the variables some special backslash_escaped symbols

are expanded during the output. If such expansions are required the

–e option must be used.

echo –e “I am santosh \n Hi”

A few global (environment) variables

Positional Parameters

When a shell script is invoked with a set of command
line parameters each of these parameters are copied
into special variables that can be accessed.

▪ $0 This variable that contains the name of the script

▪ $1, $2, ….. $9 1st, 2nd 3rd command line parameter

▪ $# Number of command line parameters

▪ $$ process ID of the shell

▪ $@ same as $* but as a list one at a time (see for loops
later)

▪ $? Return code ‘exit code’ of the last command

Positional Parameters

Example:

./myscript one two buckle my shoe

sh ./myscript one two buckle my shoe

During the execution of myscript variables $1 $2 $3 $4
and $5 will contain the values one, two, buckle, my,
shoe respectively.

read command

◼ The read command allows you to prompt for input and

store it in a variable.

◼ Example (read.sh)
◼ #!/bin/bash

echo -n “Enter name of file to delete: ”

read FILE

echo “Type 'y' to remove it, 'n' to change your

mind ... ”

rm -i $FILE

echo "That was YOUR decision!"

◼ Line 3 creates a variable called FILE and assigns the

input from keyboard to it. Then the value of this variable is

retrieved by putting the '$' in at its beginning.

test command

◼ test statement: used to test a condition

◼ Generates a true(0) /false(1) value

◼ Inside of square brackets ([…]) or prefixed by
the word “test”

◼ Must have spaces after “[” and before “]”

test 5 –eq 7 # results false [5 –eq 7]

test 7 –gt 3 # results true [7 –gt 3]

test “abcd” = “azbcd” # results false [“abcd” = “azbcd”]

test 5 –eq 7 –a 7 –gt 3 # results false

Arithmetic Comparison

expression1 operator expression2

operator -eq equal to

operator -ne not equal

operator -gt greater than

operator -ge greater than or equal to

operator -lt less than

operator -le less than or equal to

Arithmetic Comparison

Examples:

[“$n1” -eq “$n2”] (true if n1 same as n2, else false)

[“$n1” -ge “$n2”] (true if n1greater then or equal to n2, else false)

[$n1 -le $n2] (true if n1 less then or equal to n2, else false)

[$n1 -ne $n2] (true if n1 is not same as n2, else false)

[$n1 -gt $n2] (true if n1 greater then n2, else false)

[$n1 -lt $n2] (true if n1 less then n2, else false)

String Comparison

◼ “$string1” = “$string2” True if equal

◼ “$string1” == “$string2” True if equal

◼ “$string1” != “$string2” True if not equal

◼ -n “$string” True if length of string is greater then 0

◼ -z “$string” True if length string is zero

Examples

[“$s1” = “$s2”] (true if s1 same as s2, else false)

[“$s1” != “$s2”] (true if s1 not same as s2, else false)

[“$s1”] (true if s1 is not empty, else false)

[-n “$s1”] (true if s1 has a length greater then 0, else false)

[-z “$s2”] (true if s2 has a length of 0, otherwise false)

File Conditions

-d file True if file a directory

-f file True if the file exits and is not directory

-s file True if the file exist and greater than 0

-e file True if the file exist

-c file True if the file is character special file

-b file True if the file is block special file

-r file True if file exists and you have read permissions

-w file True if file exists and you have write permissions

-x file True if file exists and you have execute permissions

-k file True if file exists and its sticky bit set

test –f abcd ; echo $?

Logical Conditions

! negate (NOT) a logical expression

-a logically AND two logical expressions

&& logically AND two logical expressions

-o logically OR two logical expressions

|| logically OR two logical expressions

Examples:

[! -f test1.sh] ; echo $?

[$PERC -gt 80 -a $RANK -lt 10] ; echo $?

[5 -gt 2] && [3 -lt 10] ; echo $?

[5 -gt 2 -o 3 -lt 10] ; echo $?

[5 -gt 2] || [3 -lt 10] ; echo $?

/,*,% -first priority

+,- -second priority

In Logical

! not

-lt,-gt,-le,-ge,-eq,-ne relational

-a and

-o or

Example 5+3*6/2 equal to 14

5+3*6/2 equal to 24

Precedence

Conditional Statements
(if constructs)

The most general form of the if construct is;

if command executes successfully
then

execute command
elif this command executes successfully
then

execute this command
and execute this command

else
execute default command

fi

However- elif and/or else clause can be omitted.

Examples

SIMPLE EXAMPLE:
if date | grep “Fri”
then

echo “It’s Friday!”
fi

FULL EXAMPLE:
if [“$1” == “Monday”]
then

echo “The typed argument is Monday.”
elif [“$1” == “Tuesday”]
then

echo “Typed argument is Tuesday”
else

echo “Typed argument is neither Monday nor Tuesday”
fi

Note: = or == will both work in the test but == is better for readability.

Examples

Another example:
#! /bin/sh
number is positive, zero or negative
echo –e "enter a number:\c"
read number
if [“$number” -lt 0]
then

echo "negative"
elif [“$number” -eq 0]
then

echo zero
else

echo positive
fi

Loops

Loop is a block of code that is repeated a number of
times.

The repeating is performed either a pre-determined
number of times determined by a list of items in
the loop count (for loops) or until a particular
condition is satisfied (while loops)

for Loop

Syntax:
for arg in list
do

command(s)
...
done

Where the value of the variable arg is set to the values provided
in the list one at a time and the block of statements executed.
This is repeated until the list is exhausted.

Example:
n=5
for i in `seq 1 5 ` # for i in `1 2 3 4 5 `
do

echo -e "$n * $i = `expr $i * $n`"
done

The while Loop

◼ A different pattern for looping is

created using the while statement

◼ The while statement best illustrates how

to set up a loop to test repeatedly for a

matching condition

◼ The while loop tests an expression in a

manner similar to the if statement

◼ As long as the statement inside the

brackets is true, the statements inside

the do and done statements repeat

while do Loop

Syntax:
while this_command_execute_successfully

do

this command

and this command

done

EXAMPLE:
i=1
n=5
while [$i -le 10]
do

echo –e "$n * $i = `expr $i * $n` \n"
i=`expr $i + 1`

done

Examples

EXAMPLE:

while read LINE
do

echo -e "IP is $LINE \n"
ping -c 1 $LINE

done<IPs.txt

switch/case Logic

◼ The case statement is good alternative to

Multilevel if-then-else-fi statement. It enable you

to match several values against one variable. Its

easier to read and write.

◼ The switch logic structure simplifies the

selection of a match when you have a list of

choices

◼ It allows your program to perform one of many

actions, depending upon the value of a variable

Case syntax
Syntax:

case $variable-name in
pattern1) command

...
command;;

pattern2) command
...
command;;

patternN) command
...
command;;

*) command
...
command;;

esac

Case examples

echo -n "Enter the name of vehicle for rent. e.g. car, van, jeep:"

read rental

case $rental in

"car") echo "For $rental Rs.20 per k/m";;

"van") echo "For $rental Rs.10 per k/m";;

"jeep") echo "For $rental Rs.5 per k/m";;

"bicycle") echo "For $rental 20 paisa per k/m";;

*) echo "Sorry, I can not get a $rental for you";;

esac

functions

◼ function is series of instruction/commands.

function performs particular activity in shell i.e.

it had specific work to do or simply say task.

◼ To define function use following syntax:

function-name ()

{

command1

command2

.....

...

commandN

return

}

function example

$ sh ./function.sh
Hello santoshk, Have nice computing

Hello santoshk, Have nice computing

Contents of function.sh

SayHello()

{

echo “Hello $LOGNAME, Have nice computing”

return

}

SayHello

SayHello

Understanding Debugging

◼ Use the echo command to display the contents of

variable

◼ Use set command to display script statements as

they execute

◼ Options

◼ -v displays each line read

◼ +v turns off -v

◼ -x displays the command and arguments

◼ +x turns off -x

at command

◼ at command is capable of executing the commands at a future date

and time

◼ Example
1) at 19:30 sep 18

at> echo “excuted at 19:30” >>reports.txt

cntrl+d

job 1 at 2012-08-30 21:00

2) echo “script excuted” /tmp/abcd.txt |at now +2 minutes

crontab

◼ crontab can schedule to run a command or a script once or

periodically like minutely, hourly, daily, weekly, monthly, yearly.

crontab –l lists the jobs of the user

Crontab –e allows to edit the jobs

Format
* * * * *

| | | | |

| | | | +--- day of week (0 - 6) (Sunday=0)

| | | +-------- month (1 - 12)

| | +------------- day of month (1 - 31)

| +------------------ hour (0 - 23)

+----------------------- min (0 - 59)

Crontab examples

every 0th minute of 0th hour (i.e 12am)will run script

0 0 * * * /bin/sh /home/santoshk/bd/sc

every 30th minutes will run the script

*/30 * * * * /bin/sh home/santoshk/ping.sh >/dev/null

every Tues day at 2.30 will run the script

30 2 * * 2 /bin/sh home/santoshk/ping.sh >/dev/null

Ref: https://crontab.guru/

example

Cron entry

*/15 * * * * /bin/sh /home/santoshk/ping/check_ips.sh >/dev/null

list_of_ips.txt

C-BLOCK-C-212-S1,158.144.64.2

C-BLOCK-FH-15-S2,158.144.55.3

C-BLOCK-FH-15-S1,158.144.55.4

#C-BLOCK-FH-15-450-T,158.144.55.5

,

D-BLOCK-D-104-B-S1,158.144.68.66

D-BLOCK-D-213-S1,158.144.54.66

D-BLOCK-D-213-S2,158.144.60.130

D-BLOCK-D-213-450T,158.144.60.131

example

$ more mail_report

Dear,

Followoing IPs were not able to ping. Please check.

example part 1

cd /home/santoshk/ping

>tmp_report

>IPS_NOT_PING

grep -v "^#" list_of_ips.txt |grep -v "^,$" |grep -v "^$" >tmp_list

alias DSTAMP='date '\''+%d/%b/%Y %H:%M:%S'\'''

#START=`echo $(DSTAMP)`

echo "$(DSTAMP) Ping started" >tmp_pingreport

Initialising the script parameteres

example part 2

while read IPLINE

do

NAME=`echo "$IPLINE"|cut -f 1 -d ","`

IP=`echo "$IPLINE"|cut -f 2 -d ","`

ping -c 5 -i 0.2 -W 2 $IP |grep "64 bytes from">/dev/null

if [$? -eq 1]

then

echo "$NAME,$IP" >>IPS_NOT_PING

fi

done<tmp_list

ping lis of IPs and create non pingable IPS list (IPS_NOT_PING

example part 3

while read IPLINE

do

NAME=`echo "$IPLINE"|cut -f 1 -d ","`

IP=`echo "$IPLINE"|cut -f 2 -d ","`

ping -c 10 -i 0.2 -W 2 $IP |grep "64 bytes from">/dev/null

if [$? -eq 1]

then

echo "$(DSTAMP) Could not ping $IP : $NAME" >>tmp_report

fi

done<IPS_NOT_PING

Recheck the non pingable IPs and create report

example part 4
cat mail_text.txt tmp_report >mail_report

if [-s tmp_report]

then

SUBJECT=`head -1 tmp_report|awk '{print $6 $7 $8}'`

/usr/bin/mutt -s "Ping Service Status $SUBJECT “ mh@tifr.res.in<mail_report

fi

cat tmp_report >>tmp_pingreport

echo "$(DSTAMP) Ping Completed" >>tmp_pingreport

echo " " >>tmp_pingreport

cat pingreport >>tmp_pingreport

mv -f tmp_pingreport pingreport

#If the non pingable IPs
are in report then a mail.

References

◼ Unix shell programming -by Yashwant Kanetkar

◼ Unix Concepts and Applications –by Sumitabha Das

◼ http://www.grymoire.com/Unix/Sed.html

◼ http://www.grymoire.com/Unix/Awk.html

◼ http://www.grymoire.com/Unix/Quote.html

◼ http://www.grymoire.com/Unix/Find.html

http://www.grymoire.com/Unix/Sed.html
http://www.grymoire.com/Unix/Awk.html
http://www.grymoire.com/Unix/Quote.html
http://www.grymoire.com/Unix/Find.html

