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Length scales in physics

A look at distances

Milky Way ∼ 1021 m
Solar System ∼ 1012 m

Car ∼ 1 m
Atom ∼ 10−10 m

Proton ∼ 10−15 m
GUT scale ∼ 10−32 m

Planck scale ∼ 10−35 m
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Length scales in physics

How do we measure distances?

For galactic distances, there are (indirect) techniques
involving angular size and standard candle, also red-shift
data, and so on.
For planetary distances, one can use Kepler’s laws.
For even smaller distances (cars, shoes, ...), we can use
the tape measure.
For atomic sizes and smaller, we need to use particles
whose Compton wavelength is comparable to the size of
the object.
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Length scales in physics

(Sub-)Atomic scale measurements

On the scale of atomic distance and smaller, new effects
come into play because of quantum mechanics:
The position and momentum of a particle cannot be
measured simultaneously to infinite accuracy.
The energy and lifetime of a quantum state (particle)
cannot be measured to arbitrary accuracy.
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Spacetime noncommutativity from quantum uncertainties

Quantum Mechanics and Classical Gravity

Gravity and quantum mechanics are both important when
distances are of the order of the Planck length

`P =
(

G~
c3

)1/2
.

In order to probe physics at the length scale `P , the
Compton wavelength ~/Mc of the probe must satisfy

~
Mc

. `P =⇒ M &
~
`Pc
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Spacetime noncommutativity from quantum uncertainties

Quantum Mechanics and Classical Gravity

Classical gravity tells us that because of self-gravitation,
mass (or energy) concentrated in a region of space can
continue to collapse further.
If this region of the order of the Schwarzschild radius, a
black hole can form, and we lose access to the region
beyond the black hole horizon.
In our case, this large mass concentrated in so small a
volume (`3P) will lead to the formation of black holes and
horizons.
This suggests a fundamental length limiting spatial
localization.
Similar arguments can also be made about time
localization.
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Spacetime noncommutativity from quantum uncertainties

Spacetime Uncertainty Relations

Doplicher-Fredenhagen-Roberts, 1995

“Attempts to localize with extreme precision cause gravitational
collapse, so spacetime below the Planck scale has no
operational meaning.”

More precisely, we get the spacetime uncertainties:

∆x0

(∑
i

∆xi

)
& `2P ,

∑
1≤i<j≤3

∆xi∆xj & `2P
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Spacetime noncommutativity from quantum uncertainties

Noncommutative Spacetime (Moyal Algebra)

A concrete model for these uncertainties is the algebra
generated by operators x̂µ:

[x̂µ, x̂ν ] = iθµν ,

where θµν is a (fixed) constant antisymmetric matrix.
This model for noncommutative spacetime is a not a model
for quantum gravity. Rather, it is a bridge between standard
quantum theory and quantum gravity (whatever it might
be).
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Spacetime noncommutativity from quantum uncertainties

Analogy with Quantum Mechanics

Quantum mechanics emerges because it is operationally
meaningless to localize points in classical phase space.
Classical phase space (a commutative manifold) is
replaced in QM by a “noncommutative” manifold
[x̂i , p̂j ] = i~δij .
This leads to “cells” in phase space, giving us Planck’s
radiation law, and avoiding the ultra-violet catastrophe of
Rayleigh-Jeans law.
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Spacetime noncommutativity from quantum uncertainties

The Moyal Algebra

Our starting point is the set of commutation relations

[x̂µ, x̂ν ] = iθµν .

This algebra has the advantage that it can be realized in
terms of ordinary functions on Minkowski space, but with a
new noncommutative product:

f (x) ∗ g(x) = f (x)e
i
2
←−
∂µθµν−→∂ν g(x)

' f (x) · g(x) +
i
2
θµν∂µf (x)∂νg(x) + · · ·
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Quantum Mechanics on Noncommutative Spacetime

How do we do quantum mechanics?

Our interest is in understanding quantum theory on this
noncommutative space.
Let us look at a two-dimensional example. The
fundamental commutation relations are:

[x̂ , p̂x ] = [ŷ , p̂y ] = i~, [x̂ , ŷ ] = iθ.

We can solve the simplest non-trivial problem: particle in a
“circular” well.
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Quantum Mechanics on Noncommutative Spacetime

Piecewise constant potential

The Hamiltonian for the circular well problem is

H =
p̂2

x + p̂2
y

2m0
+ V (x̂ , ŷ)

where V (x̂ , ŷ) is a “piecewise” constant potential: it is
(−V0) in a circular region of radius R around the origin,
and zero elsewhere.
In the commutative case, the spectrum for the “infinite”
circular well is give by the zeros of the Bessel functions:

Jm(kR) = 0, m = 0,±1,±2, · · · ,E = ~2k2/2m0
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Quantum Mechanics on Noncommutative Spacetime

In the noncommutative case, the spectrum is very different,
and is given by the zeros of the associated Laguerre
polynomials:

Lm
M+1(θk2/2) = 0, m ≥ 0,

L|m|M−|m|+1(θk2/2) = 0 −M ≤ m < 0

(M is related to the radius: R2 = θ(2M + 1).
Spectrum for the noncommutative case is more sparse
compared to its commutative counterpart.
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Quantum Mechanics on Noncommutative Spacetime

Thermodynamics

The most striking effects are brought out by looking at
thermodynamics of this system.

Number of particles in a noncommutative system cannot
be made arbitrarily large: there is a “maximal” density!
Pressure diverges as the maximal density is approached.
Entropy of the system behaves radically differently: it
approaches zero at maximal density.
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Quantum Mechanics on Noncommutative Spacetime

Particle in a noncommutative circular well:
thermodynamics

Average number of particles as a function of chemical potential (Dashed line is the commutative case).
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Quantum Mechanics on Noncommutative Spacetime

Particle in a noncommutative circular well:
thermodynamics

Pressure as a function of density (Dashed line is the commutative case).
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Quantum Mechanics on Noncommutative Spacetime

Particle in a noncommutative circular well:
thermodynamics

Entropy as a function of density (Dashed line is the commutative case).
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Quantum Field Theory on Noncommutative Spacetime

QFT on commutative spacetime

Before we draw lessons from the quantum mechanical example
to carry over to field theory, it is worth recalling some salient
aspects of standard Quantum Field Theory (QFT).

QFT allows us to combine quantum mechanics with the
possibility of creating or destroying particles.
It is also an efficient technology for computing quantities in
many-body theory.
Standard QFT deals with point-like objects.
When combined with special relativity, standard QFTs also
incorporate causality.
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Quantum Field Theory on Noncommutative Spacetime

Light Cone

A is in the future of O and D is in its past, whereas B and C are causally unrelated to O.
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Quantum Field Theory on Noncommutative Spacetime

Mathematically, we say this by requiring that observables ρ
at spacelike separation commute:

[ρ(x), ρ(y)] = 0 if x ∼ y.

This condition is enforced by requiring that the quantum
fields at points x and y satisfy

[φ(x), φ(y)]± = 0.

Important: these are relativistically invariant statements.
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Quantum Field Theory on Noncommutative Spacetime

A deep theorem in QFT: for particles with integer spin, we
must choose the minus sign (use the commutator), and for
particles with half-integer spin, we must choose the plus
sign (use anti-commutator).
So causality, statistics, and spin are intimately related.
Relativistic invariance implies that the notions of fermions
and bosons are not frame-dependent – e.g. a two-fermion
state will be anti-symmetric in all reference frames.
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Quantum Field Theory on Noncommutative Spacetime

Noncommutative QFT

Our experience with noncommutative quantum mechanics
suggests that particles are not point-like – there is a
certain graininess/discreteness.
Quantum field theories on such a space should somehow
retain information of this discreteness.
We also want relativistic invariance to be compatible with
this discreteness – not easy! For example, if we replace R3

by a discrete lattice, we lose translational and rotational
symmetry.
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Quantum Field Theory on Noncommutative Spacetime

Fortunately for us, there are mathematical structures
(known as twisted Hopf symmetries) that allow us to
implement relativistic symmetries on the noncommutative
spacetime.
This procedure of “twisting” can be used to define
properties of quantum fields.
Now particles are not point-like, but have an “extension”.
The notion of locality and causality become fuzzy at very
short distances.
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Moyal (or star) product in terms of commutative product

(f ∗ g)(x) = mθ(f ⊗ g)(x) = m0(e
i
2 θ

µν∂µ⊗∂ν f ⊗ g)(x),

= m0(F f ⊗ g)(x) = (f · g)(x) +
i
2
θµν(∂µf · ∂νg)(x) + · · ·

Under a Lorentz transformation Λ, functions f and g
transform as

f (x)→ f Λ(x) = f (Λ−1x), g(x)→ gΛ(x) = g(Λ−1x)

(f · g)Λ(x) = (f Λ · gΛ)(x), BUT

(f ∗ g)Λ(x) 6= (f Λ ∗ gΛ)(x)!!

Can one do better? Yes, exploiting another underlying
algebraic structure.
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A Closer Look at the Moyal Algebra

Left- and right- multiplications are not the same:

x̂L
µf = xµ ∗ f , x̂R

µ f = f ∗ xµ.

The left and right actions satisfy:

[x̂L
µ, x̂

L
ν ] = iθµν = −[x̂R

µ , x̂
R
ν ], [x̂L

µ, x̂
R
ν ] = 0.

Define (a commuting) x̂c
µ in terms x̂L

µ, x̂R
µ as

x̂c
µ ≡ 1

2

(
x̂L
µ + x̂R

µ

)
, [x̂c

µ, x̂
c
ν ] = 0,

x̂c
µf =

1
2

(xµ ∗ f + f ∗ xµ) = xµ · f
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A Second Look at Lorentz Transformations

Under Λ, f (x)→ f Λ(x) = f (Λ−1x). This is an operation on
a single function, and does not require the star (or any)
product.
Under an infinitesimal transformation Λ ' 1 + iεµνMµν ,

f Λ(x) ' f (x)− iεµν(xµ∂ν − xν∂µ)f (x).

Notice that in the above, there is no star!
So Mµν = x̂c

µp̂ν − x̂c
ν p̂µ (p̂µ = −i∂µ)

Actually, this is how an arbitrary vector field also acts on
noncommutative functions: v̂ f = [v(x̂c

µ)∂µf ](x).

These generate infinitesimal diffeos, now making it
possible to discuss gravity theories.
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Implementing Poincaré Symmetry

Modified Leibnitz rule

Although the Mµν correctly generate the Lorentz algebra,
their action on the star product of two functions is different:

Mµν(α ∗ β) = (Mµνα) ∗ β + α ∗ (Mµνβ)

− 1
2
[
((p̂ · θ)µα) ∗ (p̂νβ)− (p̂να) ∗ ((p̂ · θ)µβ)− µ↔ ν

]
,

(p̂ · θ)ρ := p̂λθλρ .

This mysterious modification has its origins in Hopf algebra
theory (Drinfel’d).
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Group/Algebra Action on Vector Spaces

Suppose a group G acts on a vector space V as

Group Action

v → ρ(g)v , v ∈ V , and ρ a representation of G.

On a tensor product V ⊗W , the group acts as

g : (v ⊗ w)→ (ρ1(g)v)⊗ (ρ2(g)w).

So we need a map (a coproduct) ∆ which “splits” g so that
it can act on tensor products.



Quantum Signatures of Spacetime Graininess

Quantum Field Theory on Noncommutative Spacetime

Hopf Algebras, Drinfel’d Twist and Quantum Theory

Group/Algebra Action on Vector Spaces

Suppose a group G acts on a vector space V as

Group Action

v → ρ(g)v , v ∈ V , and ρ a representation of G.

On a tensor product V ⊗W , the group acts as

g : (v ⊗ w)→ (ρ1(g)v)⊗ (ρ2(g)w).

So we need a map (a coproduct) ∆ which “splits” g so that
it can act on tensor products.



Quantum Signatures of Spacetime Graininess

Quantum Field Theory on Noncommutative Spacetime

Hopf Algebras, Drinfel’d Twist and Quantum Theory

Group/Algebra Action on Vector Spaces

Suppose a group G acts on a vector space V as

Group Action

v → ρ(g)v , v ∈ V , and ρ a representation of G.

On a tensor product V ⊗W , the group acts as

g : (v ⊗ w)→ (ρ1(g)v)⊗ (ρ2(g)w).

So we need a map (a coproduct) ∆ which “splits” g so that
it can act on tensor products.



Quantum Signatures of Spacetime Graininess

Quantum Field Theory on Noncommutative Spacetime

Hopf Algebras, Drinfel’d Twist and Quantum Theory

Now an escalation

Suppose V is also an algebra (we can multiply two vectors
to get another vector).
Then our coproduct better be compatible with multiplication
in V !
First multiplying v and w , and then acting on the product
by g, must be the same as first transforming v and w
separately by g and then multiplying them.
If such a coproduct ∆ exists, we say that G is an
automorphism of the algebra.
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More On Coproduct

The usual coproduct ∆0(Λ) = Λ× Λ is compatible ordinary
multiplication, but not with Moyal multiplication.
But a twisted coproduct ∆θ defined as

∆θ(Λ) = F−1∆0(Λ)F
is compatible with Moyal product!
Indeed, mθ[∆θ(Λ)f ⊗ g] = ρ(Λ)mθ(f ⊗ g).
For infinitesimal Lorentz transformations, the twisted
coproduct reproduces our earlier result:

∆θ(Mµν) = Mµν ⊗ 1 + 1⊗Mµν

− 1
2
[
(p̂ · θ)µ ⊗ p̂ν − p̂ν ⊗ (p̂ · θ)µ − (µ↔ ν)

]
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Implications for Quantum Statistics

In usual quantum mechanics, the wavefunction of two
identical particles is the (anti-)symmetrized tensor product
of single particle wavefunctions:

φ⊗S,A χ ≡
1
2

(φ⊗ χ± χ⊗ φ) =

(
1± τ0

2

)
(φ ⊗ χ)

The flip operator τ0 is superselected: all observables
(including Mµν) commute with it.
However, τ0 ∆θ(Λ) 6= ∆θ(Λ)τ0, so usual
(anti-)symmetrization is incompatible with the new
coproduct.
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Implications for Quantum Statistics

But a twisted flip operator τθ ≡ F−1 τ0F does: this
changes the notion of fermions/bosons.
The states constructed according to

φ⊗Sθ
χ ≡

(
1 + τθ

2

)
(φ⊗ χ), φ⊗Aθ

χ ≡
(

1 − τθ
2

)
(φ⊗ χ)

form the physical two-particle Hilbert spaces of
(generalized) bosons and fermions and obey twisted
statistics.
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Twisted Quantum Fields

Suppose Φ(x) is a second-quantized field, and a†p the
creation operator with momentum p. As usual we require
that

〈0|Φ(−)(x)a†p|0〉 = ep(x),

〈0|Φ(−)(x1)Φ(−)(x2)a†qa†p|0〉 = (1± τθ) (ep ⊗ eq)(x1, x2)

≡ (ep ⊗Sθ,Aθ
eq)(x1, x2)

This gives us the twisted commutation relations:

a†p a†q = ±eiθµνpµqν a†q a†p
apaq = ±eiθµνpµqν aqap
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Twisted Quantum Fields

Interestingly, we can realize the twisted operators ap,a
†
p in

terms on usual Fock space operators cp, c
†
p:

cpcq − cqcp = 0, cpc†q − c†qcp = 2p0δ(~p − ~q).

ap = cpe
i
2 pµθµνPν ≡ cpe

i
2 p∧P ,

where Pν =
∫

dµ(k)kνc†kck is the usual Fock space
momentum operator.
This in turn allows us to write

Φ(x) = Φc(x)e
1
2
←−
∂ ∧P
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Simple Implications of Twisted Statistics

The notion of identical particles can still be defined, but
now there is a scale dependence – for example, a
two-fermion wavefunction is anti-symmetric at low
energies, but picks us a symmetric piece at high energies.
Consider a two-fermion state

|α, β〉 =

∫
dµ)p1)dµ(p2)α(p1)β(p2)a†(p1)a†(p2)|0〉

Notice that |α, α〉 does not vanish!
This is an example of a “Pauli-forbidden” state.
An experimental signature would be a transition between a
“Pauli-allowed” and a “Pauli-forbidden” state.
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“Pauli-allowed” and a “Pauli-forbidden” state.



Quantum Signatures of Spacetime Graininess

Quantum Field Theory on Noncommutative Spacetime

Hopf Algebras, Drinfel’d Twist and Quantum Theory

Simple Implications of Twisted Statistics

The notion of identical particles can still be defined, but
now there is a scale dependence – for example, a
two-fermion wavefunction is anti-symmetric at low
energies, but picks us a symmetric piece at high energies.
Consider a two-fermion state

|α, β〉 =

∫
dµ)p1)dµ(p2)α(p1)β(p2)a†(p1)a†(p2)|0〉

Notice that |α, α〉 does not vanish!
This is an example of a “Pauli-forbidden” state.
An experimental signature would be a transition between a
“Pauli-allowed” and a “Pauli-forbidden” state.



Quantum Signatures of Spacetime Graininess

Quantum Field Theory on Noncommutative Spacetime

Hopf Algebras, Drinfel’d Twist and Quantum Theory

Simple Implications of Twisted Statistics

In Borexino and SuperKamiokande experiments, one can
look for forbidden transitions from O16 to Õ16 where the
tilde nuclei have an extra nucleon in the filled 1S1/2 level.

Their lifetime is greater than 1027 years.
Experiments done on forbidden transitions to filled K -shells
of crystals (Maryland group) – branching ratios less than
10−25 for such transitions.
These give

√
θ < 10−26 m.
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tilde nuclei have an extra nucleon in the filled 1S1/2 level.

Their lifetime is greater than 1027 years.
Experiments done on forbidden transitions to filled K -shells
of crystals (Maryland group) – branching ratios less than
10−25 for such transitions.
These give

√
θ < 10−26 m.



Quantum Signatures of Spacetime Graininess

Quantum Field Theory on Noncommutative Spacetime

Hopf Algebras, Drinfel’d Twist and Quantum Theory

Simple Implications of Twisted Statistics

In Borexino and SuperKamiokande experiments, one can
look for forbidden transitions from O16 to Õ16 where the
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Gauge transformations

Gauge fields Aλ transform as one-forms under diffeos
generated by vector fields. They could be functions of x̂c or
x̂L.
If Aλ = Aλ(x̂c), then we can write gauge theories for
arbitrary gauge groups. These theories are identical to the
corresponding commutative ones.
If Aλ = Aλ(x̂L), then we can only construct U(N) gauge
theories.
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Gauge Covariant Derivatives

Under a gauge transformation g(x̂c), a charged matter
field Φ(x) transforms as Φ(x)→ g(x)Φ(x).
The quantum covariant derivative Dµ must respect this
module property of the gauge group:

Dµ(gΦ) = gDµΦ + (∂µg)Φ

Dµ must also respect (twisted) statistics, and Poincaré
covariance.
The only one which does this is

DµΦ = (Dc
µΦc)e

1
2
←−
∂ µθµνPν
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Gauge Field Strength

Field strength is the commutator of two covariant
derivatives:

[Dµ,Dν ]Φ = ([Dc
µ,D

c
ν ]Φc)e

1
2
←−
∂ µθµνPν = (F c

µνΦc)e
1
2
←−
∂ µθµνPν

F c
µν transforms correctly under gauge transformations, and

can be used to construct the Hamiltonian for quantum
gauge theory.
Pure gauge theory is identical to its commutative
counterpart, but not when matter is included.
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Matter-Gauge Interactions

The interaction Hamiltonian is of the form

H I
θ =

∫
d3x [HMG

θ +HG
θ ],

HMG
θ = HMG

0 e
1
2
←−
∂ µθµνPν ,

HG
θ = HG

0

HMG has all matter-matter and matter gauge couplings,
HG has only gauge field terms.
For non-Abelian theories, cross-terms between HMG and
HG lead to Lorentz-violating effects (QCD or Standard
Model).
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Signatures of Noncommutativity

Any high-energy phenomenon involving identical particles
is expected to carry signatures of noncommutativity,
through the deformation of the spin-statistics connection.
New physics at high densities – potential implications for
neutron star physics, Chandrasekhar limit, and early
cosmology.
Non-abelian gauge theories break relativistic invariance
(and also CPT theorem) at the quantum level. These can
give unique signatures in particle scattering processes.
Physics that involves a sharp separation of spacetime into
regions gets affected – black hole physics.
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Signatures of Spin-Statistics Deformation

Cosmic Rays

Cosmic rays are typically extreme high energy protons (of
energies as high as 1019eV ) that which collide with the
earth’s atmosphere to produce a shower of secondary
particles.
By studying two-particle distrubution function, it is possible
to obtain a bound on θ.
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Two-particle distribution function

The commutative distribution (red) and the noncommutative distribution (blue), with
√

θ ∼ 10−13m
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Signatures of Spin-Statistics Deformation

QED from Spontaneously Broken SU(2)× U(1)

The gauge group for the Standard Model is non-Abelian,
and will show similar effects.
In particular, signatures of Lorentz (or spin-statistics)
violation can be seen in QED.
A simple test is to look at the scattering at identical
fermions: in usual quantum theory, this amplitude vanishes
at 900 scattering.
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Möller scattering in QED

The interaction Hamiltonian is
HI = e

2

∫
d3x [ψ̄(x) ∗

(
6A(x̂c)ψ(x)

)
+ h.c.]

We can calculate the scattering amplitude Tθ in the
centre-of-momentum frame, with the spins of the electrons
aligned. It depends on scattering angle ΘM , dimensionless
c.m energy x = E/m, and t = m2θijε

ijk (p̂F × p̂I)
k .
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Normalized scattering cross-section for t = 10−5 and x = 100
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Möller scattering in QED

Normalized scattering cross-section for t = 10−2 and x = 100
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Non-Abelian Gauge Theories

In non-Abelian gauge theories, there are even more
(conceptually) dramatic effects: these theories lose
relativistic invariance at the quantum level.
Processes like qg → qg (quark-gluon scattering) violate
Lorentz invariance (the propagator is “frame-dependent”).

p q 1
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Noncommutative spacetime can be thought of as the
bridge between low-energy quantum field theory, and the
(eventual) theory of quantum gravity.
By taking advantage of new algebraic structures (twists)
from Hopf algebra theory, it is indeed possible to discuss
Lorentz-invariant QFT’s on noncommutative space.
Twisting deforms statistics of identical particles, with
possible signatures for Pauli principle violation at high
energies.
Noncommutative non-Abelian gauge theories show even
more dramatic effects, with the S-matrix for some
processes violating Lorentz invariance.
Signatures for spin-statistics violation may be extracted
from QED.
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Summary

Future Directions

Outlook
Spontaneous Symmetry breaking can also be discussed in
this framework. This will give us the noncommutative
Standard Model, and phenomenological signatures.
Noncommutativity makes the lightcone structure “fuzzy”,
leading to leakage of signals across lightlike horizons.
Twisted fermi statistics change the equation of state for a
“free” fermi gas – implications for early cosmology.
Julius Wess and his collaborators have extensively
developed classical tensor analysis using this as a starting
point, including a noncommutative version of the classical
Einstein action for gravity. The solutions of this Einstein
theory are still largely unexplored.
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