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The Schwinger-Keldysh (closed-time) contour
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Quantum many-body system governed by I:I(t)

At some point in time t = 0, the initial state of the system is specified
by a density-matrix 5(0).

Evolution of the density matrix: %

= —i[A(1), p(t)]
Formally solved as: j(t) = U(t,0)5(0)[U(t,0)]"

Utt) = Texp l—//lH(T)dT]

— lim e_m(r’—at)at _,e_fﬁ(t+6r)5[e—iﬁ(t)at

N— oo
with §; = (¢ — t)/N.
Expectation value of an observable:
(O(t)) =Tt {@ﬁ(t)} = Tr{lAJ(O7 Hou(t, 0),3(0)}

where the density matrix is normalized.



The Schwinger-Keldysh (closed-time) contour
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» “forward-backward” evolution along the real-time contour.

» Entanglement in quantum systems presents a major obstacle for
numerical methods

» Idea: make repeated measurements on the system to reduce
entanglement



Measurements to help us out
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Path-Integral with measurements

» General quantum system with (possibly) time-dependent Hamiltonian.
» Time-evolution t, — t4. ¢ described by U(fx 1, tx) = U(ty, ti1)'.

> Attime f (k € {1,2,--- ,N}) observable O measured with
eigenvalue o.

» Represented by the Hermitian operator P,, : projects on to the
sub-space of the Hilbert space spanned by eigenvectors of Oy with
eigenvalue o.

» Consider an initial state, specified by a normalized density matrix
p=>pil{i;with0 <p;<1and ) pi=1.
» Probability of making a single measurement of Oy at time # while

evolving from f; to t; is:
Ppr(0k)= 225 (ilU(ti, 1) Po, U(ti, ) [f) (FlU(t, t) Po, U(tc, 1)11) pj

» With many measurements,
Ppi(01, 02, -+, on) = D= {i|U(t, 1) Po, U(th, t2) Po, - - - Poy U(tn, 1))
<f|U(tf, tN)PoN co POZU(t27 t1)PO1 U(t1 ) tl)|l> Pi



Away with the Hamiltonian!

>

Matrix elements of both U(#.1, fx) and P,, are in general complex,
leading to a severe complex weight and/or sign problem.

Measurements disentangle the quantum system, and are expected to
alleviate the sign-problem.

Take an extreme case: switch off the Hamiltonian completely for the
real-time evolution. U(fx1,t) =1

Time-evolution is driven entirely by (non-commuting) measurements!

With only the measurements:
Por(01, 02, -+, ON) = D ; (f'_|P01P02 <+ + Poy [F){f|Poy - - Po, Poy |i) pj
= 3 Piii|(Po, ® P{)(Po, ® PL) - (Poy ® PJ)Iff)

Insert complete sets of states: >, |nk) (k| = I; an M) (n | =1

In the doubled Hilbert space of states |nnj), for both pieces of the
Keldysh contour (using (nomg| = (ii| & |nN+1njv+1> = |ff)):

Ppr(01,02,- -+, Z P:Z Z H NN | Po, ® Pok|nk+1nk+1>

nyn; nnny, k=0



A concrete example
» Don't pay attention to the “intermediate” measurement results!
» The probability p, to reach the final state |f):

Pot = ZZ prf (01,02,- ZP: Z Z H ALY A

01 02 ny,n; ny,ny k=0

Pk =2 o Po, ® Pok, summing over all possible measurement results.

v

Example: Two spins S, and §y forming total spin eigenstates:
1,1) =1, 1,0) = %(T; +41), [1,=1) =ll; |0,0) = %(N—H)

Projection operator on spin-1:

v

» Projection operator on spin-0: Py, = |0, 0)(0, 0|
1 0 0 O 0O 0 0 O
01 1o o & -3 o
PTlot o] PTlo 4o
0 0 1 0 0 0

v

Negative entries in P, give rise to a sign problem.



The sign-problem and it’s solution

In the doubled Hilbert space, Py @ P/ is a 16 x 16 matrix with entries:
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The sign-problem and it’s solution

In the doubled Hilbert space, P, ® P/ is a 16 x 16 matrix with entries:
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gn-problem and it’s solution
P =Py, ® P] + Py ® P] is a 16 x 16 matrix with entries:

The si

10

: 1. 1
;green — z;red — —7

1
2

Legend: black — 1;blue —



Extension to large systems

v

Example of two-spin system easily extendable to large systems.

v

System of quantum spins % on a square lattice L x L with periodic
boundary conditions.

To define the initial density matrix ) = exp(—3H), use the Heisenberg
anti-ferromagnet: H = T S-S J>0.

v

Real-time evolution is driven via measurements of the total spin
(S +3S , )2 of the nearest-neighbor spins S, and S

v



Non-commuting measurements
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Non-commuting measurements
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Non-commuting measurements
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Non-commuting measurements
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Extension to large systems

» Example of two-spin system easily extendable to large systems.

» System of quantum spins % on a square lattice L x L with periodic
boundary conditions.

» To define the initial density matrix 5 = exp(—/3H), use the Heisenberg
anti-ferromagnet: H = 2D B Sc-S,; J>0.

» Real-time evolution is driven via measurements of the total spin
(S +S , )2 of the nearest-neighbor spins S, and S

» The particular measurement sequence is arbitrary; but well defined
and corresponds to a definite “real-time physics”.

» The existing highly efficient loop-cluster algorithm for
anti-ferromagnets can be naturally extended to this particular case of
real-time evolution.

» Resulting clusters are closed loops extending in both Euclidean and
real-time, which are updated together.



An example of a cluster
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backward real-time block

forward real-time block

o
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Euclidean-time block

Identical clusters in the forward and backward real-time evolution.
Summed over “all intermediate measurements”, and all spins are
measured in the final state. Cluster bonds are decided with the matrix
elements in the matrix P = P @ P] + Py @ P{.



Properties of the initial state
» Initial state is the ground state (or thermal ensemble depending on
inverse temperature () of the Heisenberg anti-ferromagnet in (2+1)-d.

» At low-T (large 3), there is a strong Néel order which disappears for
higher temperature.

» Diagnostics for measuring the ferromagnet and the Néel orders are

the

<4*M,2>/12

uniform and staggered magnetization:
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Uniform (left) and staggered (right) magnetization for a 2-d Heisenberg model



Uniform magnetization

The uniform magnetization M, = 1 >~ S2 should be constant since it
commutes both with the Hamiltonian and the measurement.
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Staggered magnetization
The staggered magnetization is destroyed by the measurements, and
a new state is established.
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The Lindblad Equation

>

Real quantum systems are always dissipatively coupled to the
environment (finite decoherence time).

The dissipative coupling can be modelled as the system being
subjected to sporadic measurements in the continuous time limit

tk+1 —tk:€—>0.

This is the Lindblad Evolution which is the most general non-unitary
Markovian time evolution of p preserving the properties of Hermiticity
and positive semi-definiteness.

Are characterized by a set of operators which describe all the possible
set of quantum jumps the system might undergo at any instant of time

Lo, = /7P (1—en)¥+ > Lh Lo, =K
Ok

The Lindblad equation is:

dﬁT(tt) = —i[H,p]+ % ozk {Lokp(t)sz - % {LgkLok’p(t)}}

= 7> [Po,p(t)Po, — p(1)] (without H)



Lindblad evolution: Structure factors

600 _
A (/8,7/8) —a—
500 ¢ 4 (/4. 7/4) ]
Y (51/8,57/8) —o—
400 (3m/4,31/4)
300 | (m,) .
200 |
100 |

Evolution of the Fourier-modes can be parametrized by

(IS(P)I?) — A(p) + B(p) exp(~1/7(p))
For small momenta, 1/[y7(p)] = C|pa|” with r = 1.9(2)



Lindblad evolution: Structure factors
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Evolution of the Fourier-modes can be parametrized by
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(IS(P)I?) — A(p) + B(p) exp(—t/7(p))
For small momenta, 1/[y7(p)] = C|pa|” with r = 1.9(2)



Lindblad evolution: Staggered susceptibility
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Staggered susceptibility (V2)/L? « L? for small-t. Plot: (M2)/L*.
Breaking of SU(2) symmetry restored at late (real) times. Phase
transitions in finite real-time?



Lindblad evolution: Binder cumulant
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Phase transitions in finite real-time?



Chi PT for low energy anti-ferromagnets

> SU(2) Heisenberg antiferromagnets in (2+1)-d share many features with QCD.

»> For both the systems, the low-energy effective theory can be captured by an effective
field theory, which describes the magnon-magnon interaction in anti-ferromagnets,
similar to the pion interactions in QCD.

R
S[8] = /dzxdt@ 8,8.0,8 + — 9,8.9,8
2 c?
where is a Goldstone boson (magnon) field in

SU(2)/U(1) = $%; &(x) = (e1(x), e2(x), e3(x)), &(x)* =1

> The low-energy constants of the theorys are the staggered magnetization Ms, the spin
stiffness ps, the speed of sound c.

» check the applicability of Eulidean time methods in real-time.
» For example, take the expression for xs

MEL23 c c \? 1
Xs=—% {1+2psuﬂ1(/)+<psu) [61(/)2+3B2(/)]+0(L3)}

> Make the LEC’s time dependent and see real-time behaviour.



Chiral PT to study the real-time evolution
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Exponential decay of the staggered magnetization: Ms(t) = Ms(0) exp(—t/7)



How far to trust the EFT?
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The lengthscale £ = ¢/(27ps) diverges as the spin stiffness ps vanishes.




In progress: some things done, more to come - - -
» Studied all possible measurement processes using two-spin
observables. Ref: arXiv: 1502.02980, PRB xxx

» Study of a real-time transport (spin diffusion) process.
Ref: arXiv: 1505.00135

» Cooling into dark states.

» Different initial states in different phases in a model with richer phase
structure.

» Bring back the Hamiltonian.

» Progess seems possible with fermions in the game as well.

Thank you for your attention
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