

Beam Down Solar Power Tower Concept and its competitiveness with solar PV

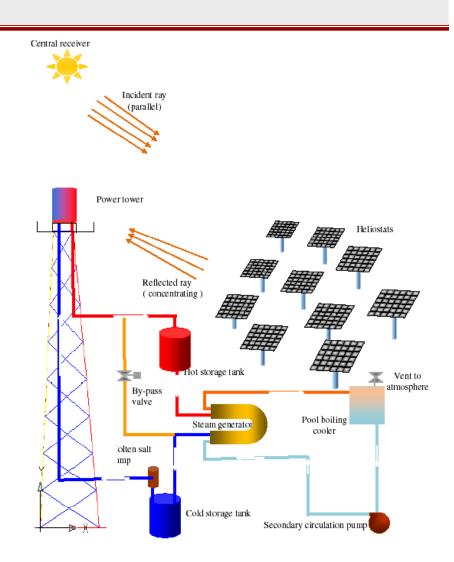
P.K. Vijayan Reactor Design & Development Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

ASET Colloquium, AG-66, 14th August, 2015, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai

- Introduction
- Brief description of power tower
- Advantages of power tower concept
- Brief description of beam down power tower concept
- Advantages and challenges of beam down concept
- Hybrids with beam down plant
- Cost comparison with Solar PV
- Research directions for cost reduction
 - Thermal radiation shield
 - Brayton cycle
 - Passive ultimate heat sink
 - Passive controls
- Concluding Remarks

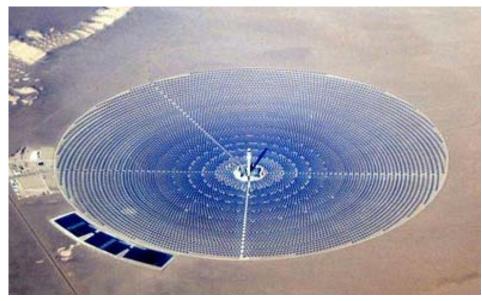
Introduction

- Solar is abundant
 - Non greenhouse gas generating power source
 - No pollutants emitted
- Dilute and Distributed source
 - Peak solar insolation ~ 1 kW/m²
 - CSP technology is well developed
 - Large land requirement
 - Sun tracking required
- Economically harnessing solar energy is a technological challenge
 - Eliminate or minimise operators
 - Eliminate/minimise components/piping
 - High temperature thermal energy storage
 - Passive systems and controls
 - High technology



The Power Tower Concept

The Power Tower Concept


- Main components are
 - Central tower with a receiver
 - Sun tracking heliostats
 - Thermal energy storage system
 - Molten salt heat transport system
 - Steam generating system
 - Turbine and auxiliaries
- Heliostats reflect the solar rays on to a receiver atop the central tower
- The absorbed heat in MSS is transported to the SG
- The generated steam drives the turbine
- Existing power plants based on this concept are PS-10, PS-20, Gemasolar, Crescent Dunes, Ivanpah, etc.

Schematic of the power tower concept

Beam up solar plants

Crescent Dunes Solar Energy Project, USA

Heliostat Solar-Field Apert	ure Area: 1,071,361 m ²
Heliostat Aperture Area:	62.4 m ²
Tower Height:	540 ft
Receiver Type:	External - cylindrical
Heat-Transfer Fluid Type:	Molten salt
Turbine Capacity (Gross):	110.0 MW
Output Type:	Steam Rankine
Power Cycle Pressure:	115.0 bar
Storage Type:	2-tank direct, 10 hours, raising salt
temperature from 550 to 1	1050 F.

Ivanpah Solar Electric Generating System, USA

Heliostat Solar-Field Apert Heliostat Aperture Area: Tower Height: Receiver Type: Heat-Transfer Fluid Type: Turbine Capacity Output Type: Power Cycle Pressure: Fossil Backup Type:	15.0 m ² 459 ft Solar receiver steam generator Water 392.0 MW Steam Rankine 160.0 bar Natural gas
	5
Storage Type:	None

Beam up solar plants contd..

Gemasolar Thermosolar Plant, Spain

Heliostat Solar-Field Apert	ure Area:	304	,750 m²	
Heliostat Aperture Area:	120.0 m ²			
Tower Height:		140	m	
Heat-Transfer Fluid Type:	Molten	salts	(sodium	n and
potassium nitrates)				
Turbine Capacity	19.9 MW			
Cooling Method:	Wet cooli	ng		
Fossil Backup Type:	Natural ga	as (15%)	
Thermal Storage	Storage T	ype:		2-tank
	direct, 15	hour(s)		

ACME Solar Tower, India

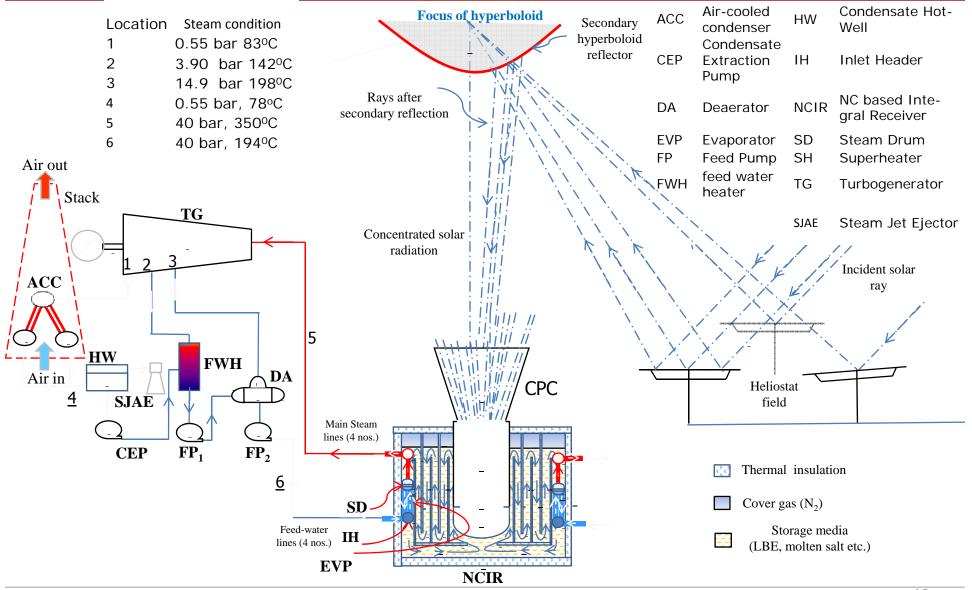
Heliostat Solar-Field Apert	ure Area: 16,222 m ²
Heliostat Aperture Area:	1.136 m ²
Tower Height:	46 m
Heat-Transfer Fluid Type:	Water/Steam
Turbine Capacity (Gross):	2.5 MW
Output Type:	Steam Rankine, 60.0 bar
Cooling Method:	Wet cooling, Cooling
	Towers

Thermal Storage Storage Type:

None

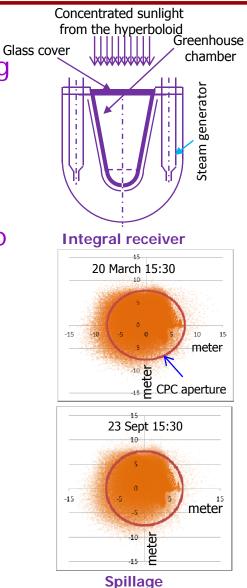
Advantages of Power Tower Concept

- High temperature design
 - High temperature process heat applications competitive economics
 - Hydrogen production by thermo chemical or high temperature electrolysis
 - Metallurgical / material processing industries
 - Why not a solar blast furnace?
- High efficiency power conversion cycles feasible
 - Brayton cycle
 - Supercritical, ultra supercritical or advanced ultra supercritical Rankine cycles
 - Combined cycle
- Thermal energy storage is feasible
 - Base load power station is a possibility
- Could be competitive with solar Photo Voltaic
- Synergy with HTR & MSR

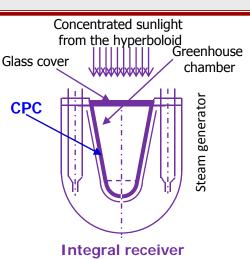


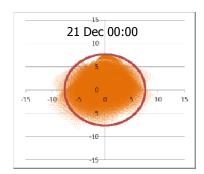
The Beam Down Concept

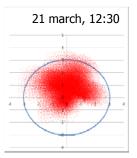
Traditionally the power tower concept is a beam up design


The Beam Down Power Tower Concept

Advantages of Beam Down Power Tower Concept

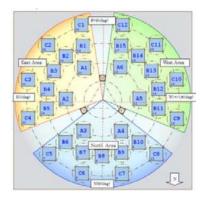

- All major equipments are at ground level including the receiver
- Significant reduction in the cost of central tower
- Ease in installation, maintenance and operation
- Natural circulation possible
- Integral receiver design (Receiver cum CPC cum SG cum FWH cum TES) possible (Eliminates pump & piping)
- Spillage can be utilised for feedwater heating
- Retains advantages of power tower design
 - High temperature design
 - Hydrogen production & other process heat applications
 - Metallurgical/material processing feasible
- Hybrids are possible with beam down concept
 - Solar-bio gas hybrid
 - Solar-coal hybrid
 - Solar-nuclear hybrid





Challenges of Beam Down Concept

- Additional optical components (hyperboloid mirror & CPC)
- An additional reflection loss at the central hyperboloid mirror
 - Compensated by the greenhouse radiation shields
 - Spillage collection is a bonus
 - High temperature receiver surface is not exposed
- Size optimisation for optical components
 - Secondary reflector
 - Type of Secondary reflector (Flat / hyperboloid)
 - Central receiver (larger spillage for smaller receiver)
- Due to the large area of the hyperboloid mirror, wind load is large
- Maintenance of the hyperboloid mirror is difficult (receiver maintenance in beam up design)
 - Provision to raise and lower on demand for maintenance
 - Cleaning provision required


Current status of beam down approach

Current status of Beam down Plant

- Archimedes is credited with the first use of beam down concept
- The concept of beam-down was proposed by Weizmann Institute in Israel.
- Several designs are reported in literature* up to 100MW_{th}
- Demonstration plant of 100kW_{th} is built at MASDAR, Abu-dhabi, UAE

- 33 ganged-type heliostats of 8.5 m² each
- 3 fields with 11 heliostats each

100 kW_{th} Beam Down Demo Plant at Masdar

* Hiroshi Hasuike , Yoshio Yoshizawa b, Akio Suzuki c, Yutaka Tamaura, Study on design of molten salt solar receivers for beamdown solar concentrator Solar Energy 80 (2006) 1255–1262

Current status of Beam down plants

- 500 kW_{th} Beam Down plant built at WIS Rehovot, Israel
- Secondary reflector is Monolith hyperboloid mirror of 70 m²
- Receiver works at 1300 °C at 20 Bar pressure air
- CPC is of 2.2 meter aperture diameter and height of 5m

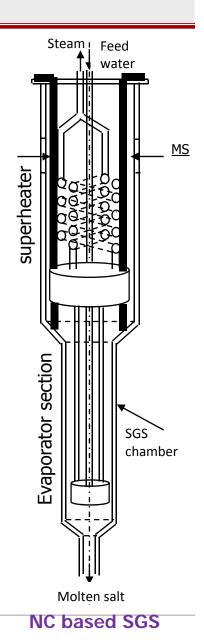
Beam down tower

Solar Air receiver CPC

500 kW_{th} Beam Down Demo Plant

 Performance validation of Central Hyrperboloid Reflector of higher capacity is yet to be done

8/14/2015



BARC Design of Beam Down Power Tower

Design Goals of BARC Beam Down Plant

- Integral receiver design
- Natural circulation in MSS as well as SGS
 - Eliminates
 - Molten salt circulation pumps
 - Flow control to suit diurnal power variation
 - Fast stowing down of heliostats
 - Maintenance requirements
- Eliminate/Minimise operator action
 - Natural circulation in MSS as well as SGS
 - Passive controls
 - Self powered heliostats
 - Automatic heliostat cleaning
- Helical coil type superheater
- Passive air-cooled condenser
- Round the clock operation with thermal energy storage (16 h) in molten salt

Optical Design

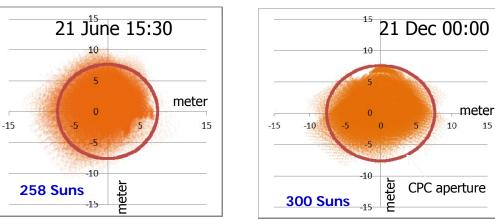
Following information is obtained by optical design

- Hyperboloid size and shape
- Central tower height
- Compound Parabolic Collector dimension
- Receiver aperture
- Heliostat size and curvature
- Heliostat field layout
- Power received by the molten salt fluid
- RAYTRACE code developed for optical design

- A computer code 'RAYTRACE' developed for optical design of Solar power plants.
- RAYTRACE computes power obtained from the heliostat field and it can handle multiple towers, uneven terrain, beam up and beam down plants.
- RAYTRACE computes image shape of each heliostat on receiver, cosine losses, flux distribution and spillage losses. It has capability of computing shading and blocking effect also.
- Benchmarking of RAYTRACE has been done with data available in literature achieving close match.
- RAYTRACE is utilized for design and optimizing of Hall-7 roof top facility, Gamma Garden solar facility, SOLTOP-5 plant at Manuguru and SOLTOP-2 power plant at IITJ.

RAYTRACE Code Features

15



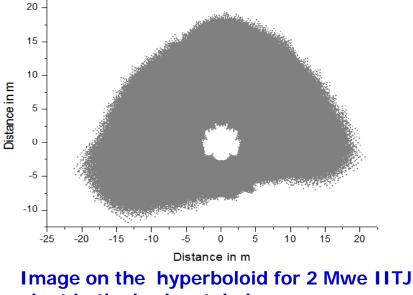


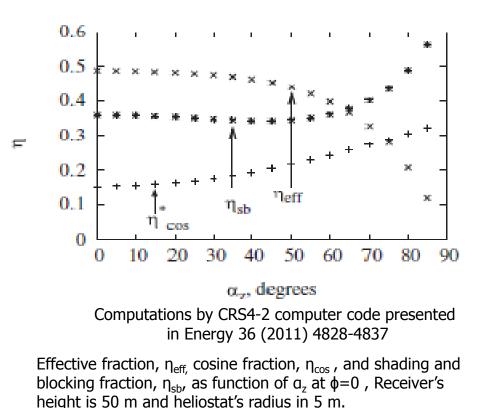
Image at CPC top on solstice and equinox days

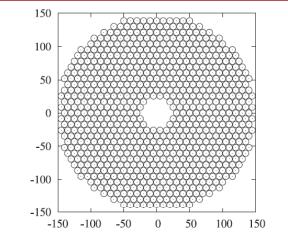
- Computes Receiver aperture radius & hyperbolic reflector radius
- Computes solar concentration achieved
- Power output with or without storage.
- Computes spillage at the receiver
- Image size on the hyperboloid mirror

Distance in m

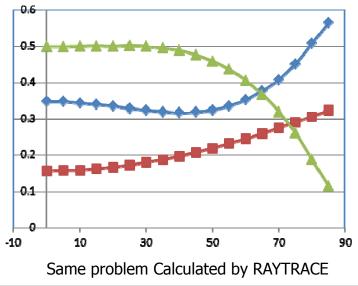
plant in the horizontal plane

Computational Procedure for RAYTRACE

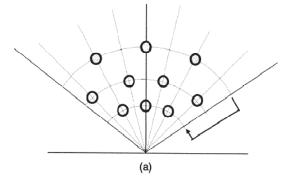

- Based on the day and local time, the azimuth and elevation of the sun is computed.
- The heliostat curved surface is divided in several reflective elements.
- Each heliostat surface is oriented so that reflected ray from central element falls on desired focus which provides desired heliostat rotation.
- The reflected ray falls on the hyperbolic mirror which further reflects it to the CPC. Sun shape is also taken into account in all the computations.
- Shading and blocking, flux computations, concentration in CPC are also computed by RAYTRACE code



Benchmarking RAYTRACE Code


(Energy 36 (2011) 4828-4837)

Solar field consists of 786 number of heliostats. Heliostats are circular with radius 5m. Tower height is 50m. Inner radius of the heliostat field is 30m and maximum radius is 140m. Land coverage is 91% in the presented layout.

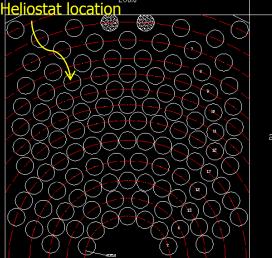

Solar field configuration taken for comparison with CRS4-2 computer code. (Leonardi et al, Energy 36 (2011) 4828-4837)

Heliostat Layout

- (a) HELFILA code developed for heliostat field layout. The code generates an optimal heliostat layout given the tower height, heliostat size, land area and its orientation Lattitude & Longitude)
- (b) Minimum shading and blocking or as specified.
- The criterion selected to base the decision upon is that the land area covered by the reflecting surface should be maximized. The measure of the land use is the mirror density, defined as follows:

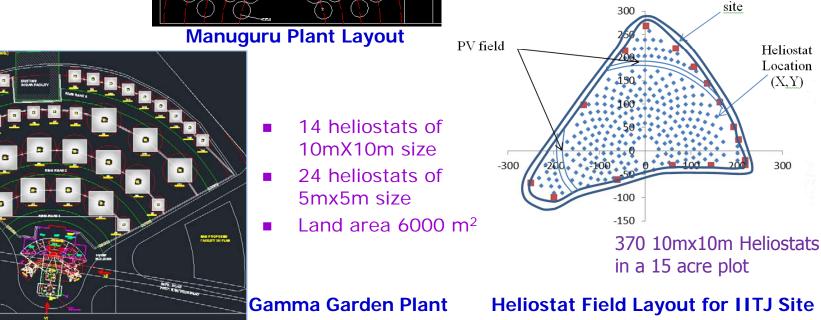
$$\delta = \left(\frac{\text{net reflecting surface area}}{\text{land covered area}}\right) = \left(\frac{N_m A_m}{A_f}\right)$$

Methodology adopted in HELFILA

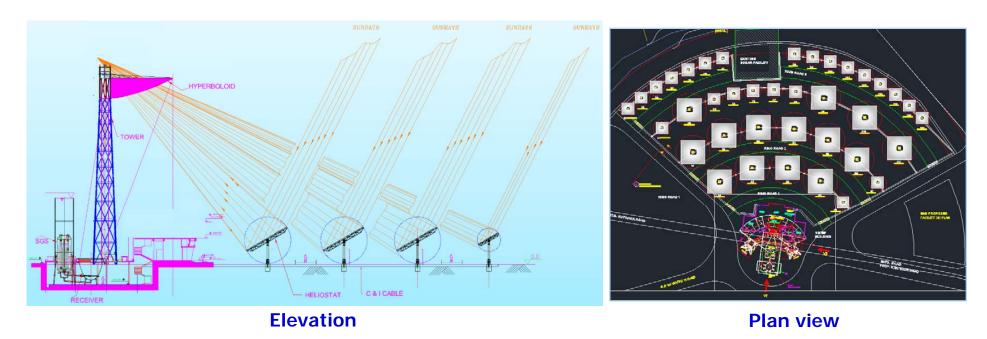

(b)

Heliostat field layouts for different plants

HELFILA Features

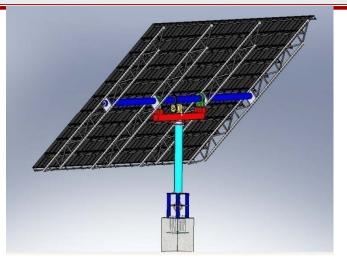

- Multiple heliostat size
- Maximises land utilisation
- Any land orientation

- 120 nos. of 10m X 10m heliostat
- 200m X 200m plot
- 30% land utilization
- Average power 3.3 MW_{th}


Boundary of

300

Gamma Garden Solar Plant



- Gamma garden plant is a 50 kWe 24 hour operating beam down plant
- Power generation as well as solar hydrogen generation
- Heliostats: 10mx10m (14 No.) & 5mx5m (24 No.)
- Thermal energy storage: 16 h

Optical Components

- Heliostat, hyperboloid mirror and CPC are the optical components in a beam down plant.
- Sizing of hyperboloid and CPC by the in-house RAYTRACE code
- Heliostat size optimisation
 - 1.5mx1.5m, 3mx3m, 5mx5m, 7mx7m, 10mx10m &12mx12m
 - Cost of control, wind load & structure
 - Designed for operation at 40 kmph & survival at 160 kmph
 - Two axis tracking
 - Powered by solar PV panels
- Central tower also influences the optical design
 - Height
 - Shading and blocking
 - Spillage

Heliostat

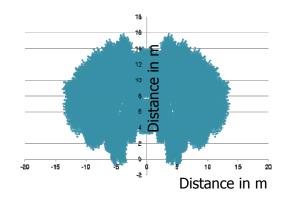
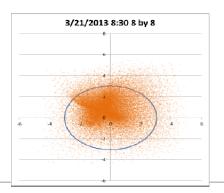



Image at hyperbolic reflector

Optical Components

- Hyperboloid mirror atop central tower
 - Designed for operation at wind speed of 40 kmph and survival speed of 160 kmph
 - Guide rail to move the mirror up and down
 - Cleaning jets provided along the periphery
 - Total deflection less than 0.5 mrad
- Compound parabolic collector (CPC)
 - Spillage
 - Cooling
- Receiver
 - CPC cum receiver
 - Integral type

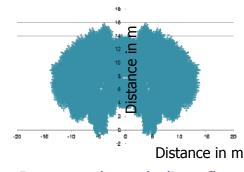
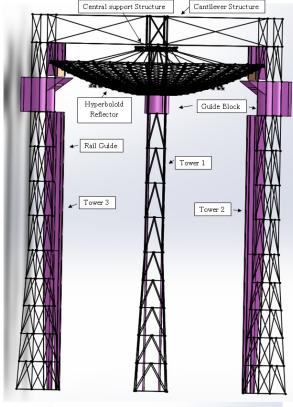
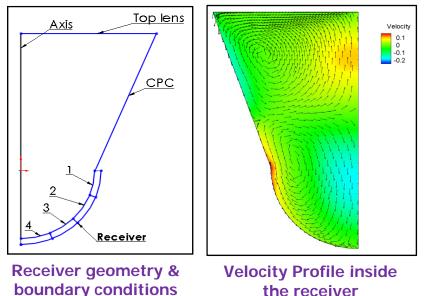
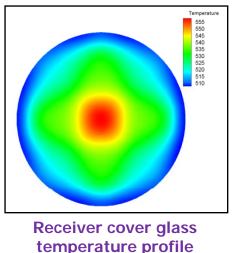
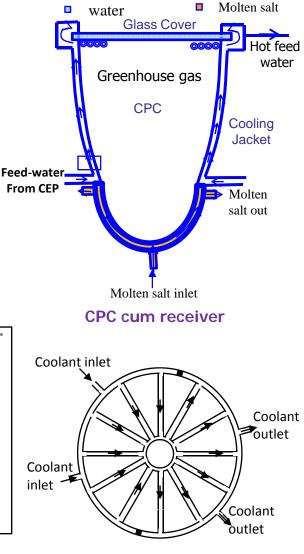



Image at hyperbolic reflector

Spillage

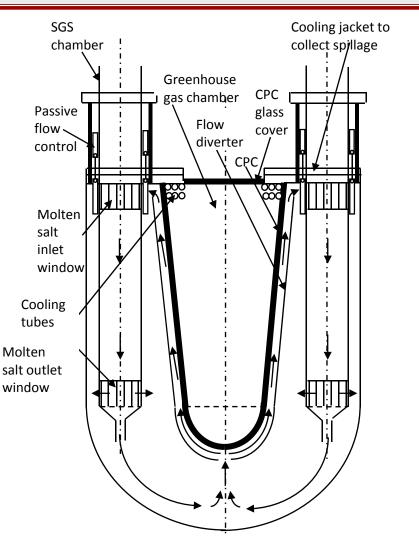



Hyperboloid mirror structure



CPC cum Receiver

- CPC top glass cover support needs cooling used for feed water heating
- CPC itself has a cooling jacket
- Greenhouse radiation shield
 - Utilises energy trapped for feed water heating
- Spillage is utilised for feed water heating
- Receiver is subjected to thermal cycling



Cover glass support structure

Integral Receiver

- Integral receiver cum CPC cum FWH cum SG cum TES
 - Eliminates hot and cold storage vessels
 - Eliminates piping and associated heat losses
 - Eliminates separate steam generator system
 - Reduced radiation heat losses compared to beam up design (receiver is insulated from all sides except the beam window)
- Molten salt as well as SGS is natural circulation type
 - Eliminates pump and flow control to account for diurnal variation in solar insolation
- Passive flow control for constant steam generation rate

Integral receiver

Major Components of the Plant

1

			Natural Draft ACC Design Data		
			No. of units	4	
		Air mass flow rate	248.25 kg/s		
			Face velocity	3.7 m/s	
			Air heat transfer coefficient	30 W/m ² K	
			Pressure drop	10.5 Pa	
			Stack Diameter & height	8 m & 40 m	
2 WWe indigenously available TG set	Natural Draft ACC	•	Turbine design daInlet steam Pressure:Steam temperature:3Steam flow rate:12.7Power:2MWe at generCycle efficiency:-20.2 % (water cooled)-Efficiency can be increatedregeneration	40 bar 50°C tph rator terminals ed)	
A consistent of the second sec	Top Cover spillage collection jacket CPC Receiver Receiver	• • • • • • • • • • • • •	Integral Receiver Natural circulation base Integral storage cum SC Maximum Surface temp One hour thermal storag Average heat flux 0.15 I Max. thermal loss 10% Steam at 350 °C & 40 b	ed receiver. GS 5. 650ºC. ge (9 MW _{th}) MW/m² .	

Analysis of Steam Generating System

Energy equation for fluid

$$\frac{\partial T}{\partial t} - \alpha \frac{\partial^2 T}{\partial s^2} + \frac{W}{A_{in}\rho_0} \left(\frac{\partial T}{\partial s}\right) = \frac{-4h_{in}(T - T_w)}{\rho_0 D_{in} C_p}$$

Momentum equation for fluid

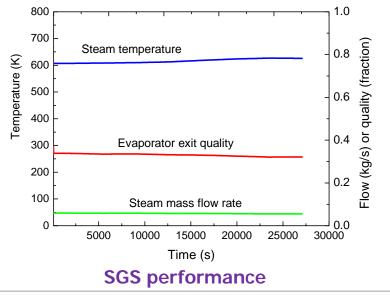
$$\frac{\Delta s_{i}}{A_{in}} \frac{dW}{dt} = \rho_{0} g \left(1 - \beta \left(T_{i} - T_{0}\right)\right) \Delta z_{i}$$
$$- \frac{f_{i} \Delta s_{i}}{D_{in.i}} \left(\frac{W}{2\rho_{0} A_{in,i}^{2}}\right) - k_{i} \left(\frac{W^{2}}{2\rho_{0} A_{in,i}^{2}}\right) - \Delta p_{i} - \Delta p_{acc},$$

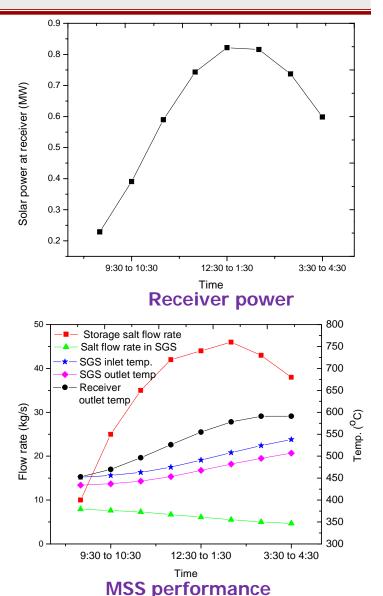
Conduction equation for the wall

$$\frac{\partial T_w}{\partial t} - \alpha_w \frac{\partial^2 T_w}{\partial S^2} = -\frac{4h_{in}(T_w - T)}{\rho_w C p_w} \left(\frac{D_{in}}{(D_o^2 - D_{in}^2)} \right)$$
$$-\frac{4h_o(T_w - T_x)}{\rho_w C p_w} + \frac{4q}{\rho_w C p_w} \left(\frac{D_o}{(D_o^2 - D_{in}^2)} \right)$$

subscripts

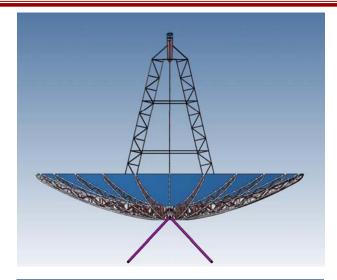
- $in \Rightarrow$ inside the loop
- $a \Rightarrow \text{ambient}$
- $o \Rightarrow$ outside the loop
- $w \Rightarrow$ wall
- $s \implies$ secondary (cooler) side
- $i \Rightarrow i^{th}$ node
- LBENC Code for NC analysis developed in-house
- It can take different fluids
- Coupled analysis possible

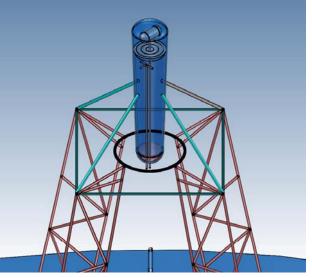

Where,


for pipes
$$T_x = T_a$$
, $h_o = h_a$ and $q = 0$
for cooler $T_x = T_s$, $h_o = h_s$ and $q = 0$
for heater $h_o = 0$ and q specified

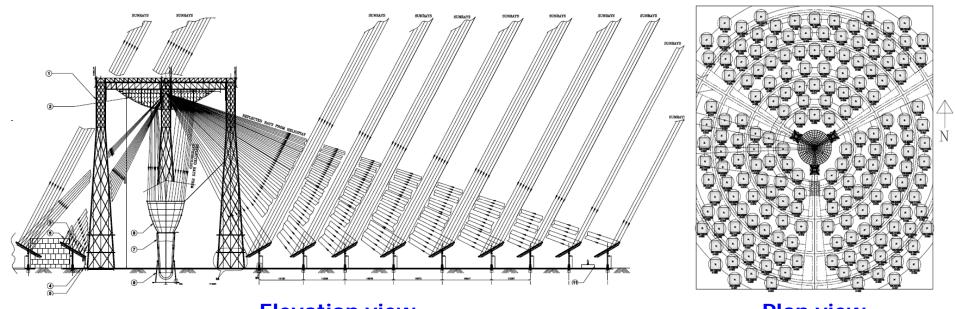
Integral Receiver Performance

- In-house developed code for NC analysis
- Power collected varies with the time of the day
- MS temperatures and flow rates also vary with time
- Steam generation rate is <u>nearly constant</u> with passive flow control
- The loop circulation rate is one-fourth of the circulation rate in the SGS tank





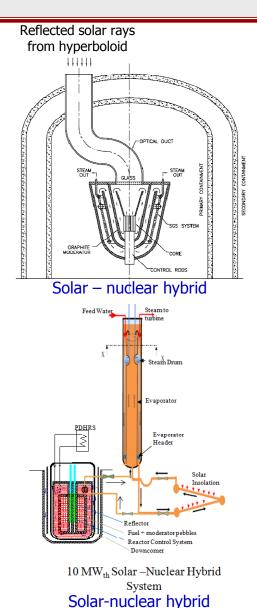
Hybrids with solar power tower


- High temperature solar thermal power technologies are necessary for increased efficiency and high temperature process heat applications.
- High temperature solar power plants needs to be operated continuously to avoid thermal cycling and to prolong plant life.
- Generally, continuous operation is achieved either by hybridisation or by providing thermal energy storage.
- Thermal energy storage is not economic as the main cost in a power tower concept is in the heliostats whose number has to be enhanced tremendously.
- Several different types of hybrids are proposed.
 - Solar-biogas hybrid
 - Solar-fossil hybrid
 - Solar-nuclear hybrid
- A single dish solar-biogas hybrid has been designed

Solar Biogas hybrid

Solar-coal hybrid plant at Manuguru

Elevation view


Plan view

Heliostat Solar-Field Aperture	Area: 18,400 m ²
Heliostat Aperture Area:	100.0 m ²
Tower Height:	60 m
Thermal power generated	5 MW _{th}
Heat-Transfer Fluid Type:	Molten salts (sodium and potassium nitrates)
Thermal Storage	Molten salt, Integral with the receiver

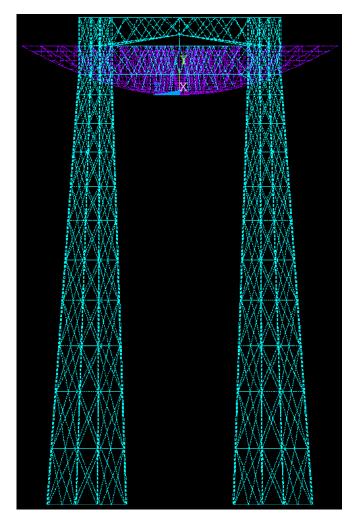
Solar-Nuclear Hybrid

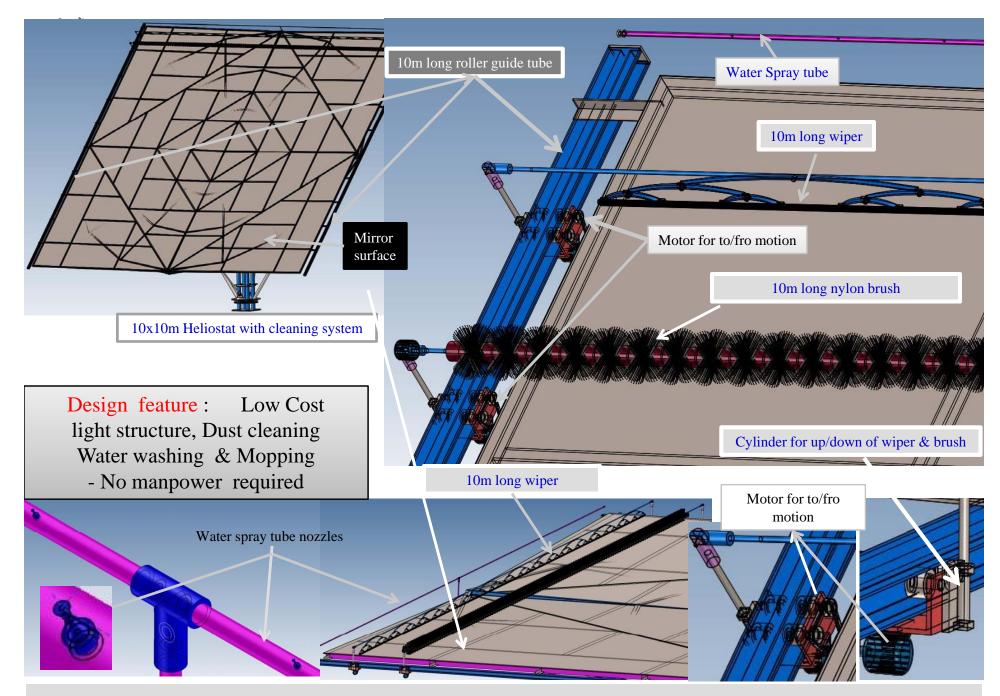
- In most instances, hybridisation is proposed with fossil fuels which generates greenhouse gasses.
- Maximum capacity factor for solar is only 20%.
- Nuclear power is cheaper than solar thermal today.
- A solar-nuclear hybrid is possible with the power tower concept if the beam down approach is adopted.
- Nuclear reactor operates during nonsolar hours.
- Decay heat is a boon rather than a curse.

35

Research Directions of a Beam Down Plant

- Reduction in optical losses
- Validation of optical design code
- Integral receiver cum storage cum steam generator design validation
- Direct solar energy absorption in transparent molten salts
- Hydraulic heliostats
- Greenhouse radiation shield development
- High efficiency power conversion cycles
- High temperature thermal energy storage
- High temperature structural material development
- Development of solar selective coating & its characterisation
- Passive air-cooled condenser development


Roof top test facility for validation



Reducing Optical Losses

- Reduction in cosine losses (18-25%)
 - Increase in tower height reduces cosine losses
 - Heliostat layout
 - Heliostat field orientation
- Automatic heliostat and hyperboloid mirror cleaning
- Increasing the height of tower
- Hyperboloid mirror versus flat mirror
 - Planar mirrors are much easier to construct
 - Smaller image at ground level
 - Precise control of curvature not required
 - Planar mirrors ideal for smaller plants
 - Hyperboloid mirror is ideal for larger plants
- Validation of optical design code
 - Joint work in progress with ICT

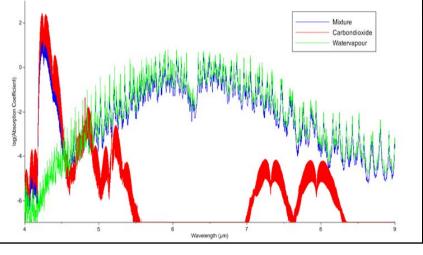
Automatic Heliostat Cleaning System

Design Validation- Rooftop Solar test facility

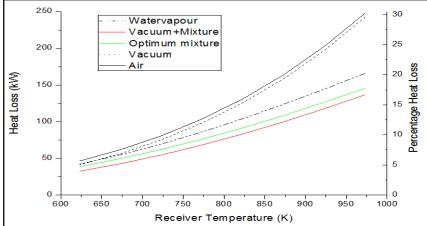
Objectives:

- Performance validation
 - Heliostat
 - Integral Receiver
 - Tracking mechanism
 - Air cooled condenser
- Demonstration of the desired molten salt temperature
- Demonstration of steam generation at the desired conditions for power generation

Molten salt receiver


Greenhouse Radiation Shield Development

- Greenhouse gases are transparent to solar radiation and opaque to the radiation emitted by the receiver.
- Greenhouse gas reduces radiation loss from the receiver surface
- Calculations show ~8% saving which is roughly the same as lost due to additional reflection at the hyperboloid surface
- Additional savings looks possible with mixture of gases
- Spillage can be collected to heat feed water.



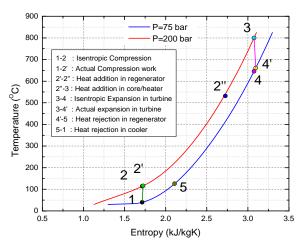
Concentrated sunlight

from the hyperboloid Greenhouse

Absorption coefficient Vs wavelength for individual gases and mixture



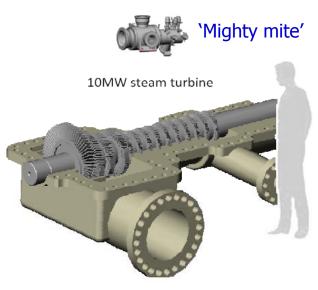
Heat loss variation with greenhouse gas radiation shield



Development of High Efficiency Power Conversion Cycle

- Brayton cycle is cheaper and simpler than Rankine cycle
- With Supercritical CO₂, overall cycle efficiency of 35-50%
- Critical temperature of CO₂ is ~31°C and pressure ~ 7.4 MPa avoiding two-phase region
- Compact size components compared to steam cycle
- Compressor work is less for SC CO₂
- High rotational speed
- Joint work in progress with academic institutes & industry participation

Brayton cycle Power Conversion System



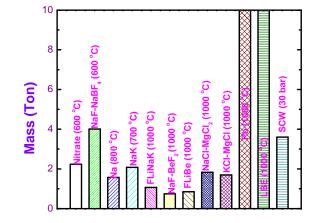
T-S diagram for Brayton cycle Power Conversion System


Advantages of SCBC

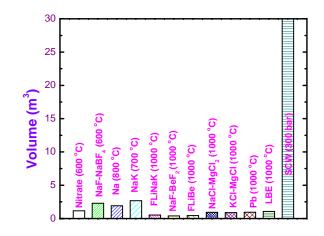
- The SCBC power conversion system is promising for advanced nuclear reactors, solar, geothermal or fossil fuel systems. The main advantage of a SCBC are:
 - Reduced compression work:
 - Efficiency improvement.
 - Simplified cycle:
 - Single compressor without inter-cooling stages.
 - High pressure: compact heat exchangers and turbines.
 - Significantly fewer turbine compressor stages than helium based Brayton cycle
 - SCBC with air cooled HX eliminates water requirement (attractive for desert sites)
 - Small overall size:
 - Smaller footprint,
 - Better economics (~18% less cost compared to traditional Rankine cycle).

10MW sCO₂ turbine

Ref: M/s. Ecogen Power Systems

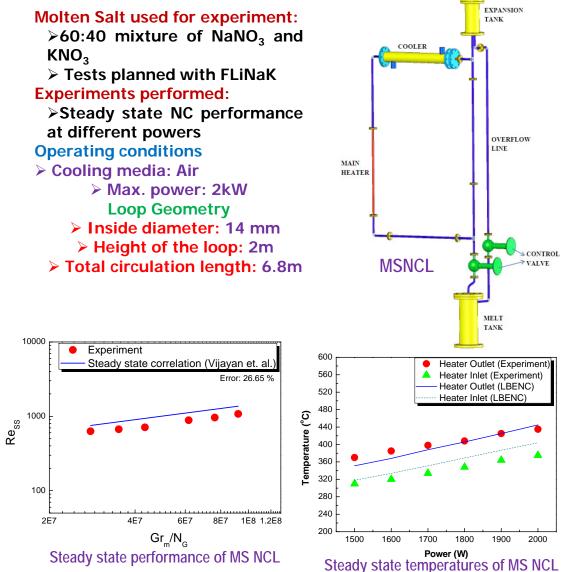

PCHE Block Section

Ref: V. Dostal et. al., "A S-CO2 Brayton Cycle for Advanced Reactor Applications," Transactions of the American Nuclear Society, 85, (2001).



High Temperature Thermal Energy Storage

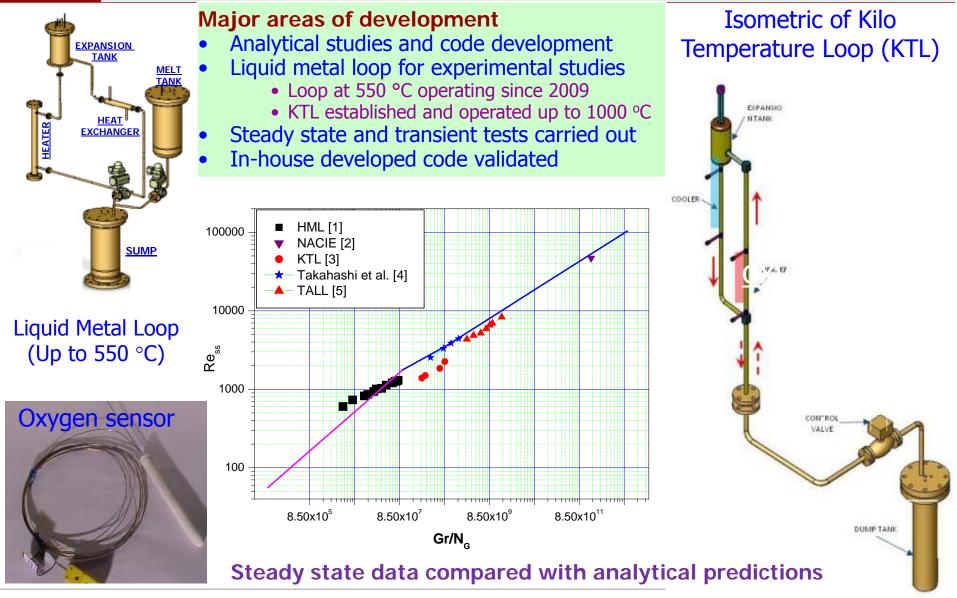
- Required for power tower
- Only liquids are considered as heat extraction to generate steam is easier
- Candidate fluids considered are molten metals, molten salts and supercritical water
- The volume is directly related to the size of the vessel
- Molten salts and molten liquids can be stored at low pressure compared to SCW
- Molten salts and liquid metals are excellent high temperature TES media


Mass required to store 1 GJ

Volume required to store 1 GJ

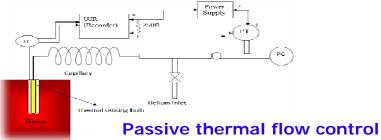
Molten Salt Natural Circulation Loop (MSNCL) and Molten Salt Corrosion Test Facility (MOSCOT)

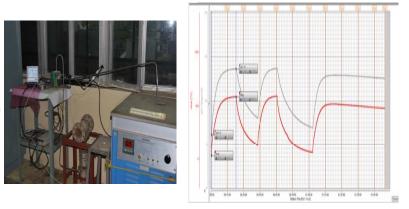
Photograph of MOSCOT Facility


Molten Salt used for corrosion study:

≻Eutectic mixture of LiF-NaF-KF Corrosion rate of different structural materials in 'mpy'

Temp	Inconel			Incoloy
°C	600	617	625	800
550	6.2	10.0	-	17.4
600	12.2	18.2	6.1	30.1
650	25.9	22.7	5.0	31.2
700	25.4	33.9	71.3	45.4
750	15.8	97.9	127.6	33.2


Thermal hydraulic Studies for LBE Coolant

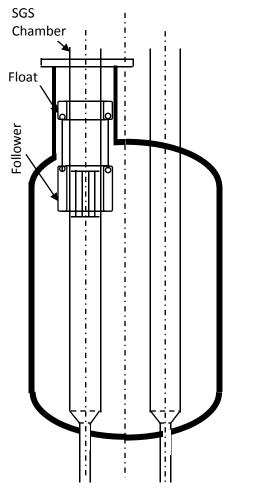


Development of Passive Controls

- Passive controls by definition do not use any external power source
 - Derives power from the system based on natural physical laws such as buoyancy and gravity
- Passive controls involve the use of
 - Passive sensors (pressure, delta-P and level)
 - Self powered sensors (e.g. thermocouples)
- Typical passive controls under development
 - Passive temperature control,
 - Passive flow control and
 - Passive level control using PPPT
- Passive valves under development
 - Several PVs developed for AHWR

test setup

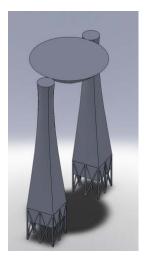
Thermal flow control valve test facility and valve response


HSPV

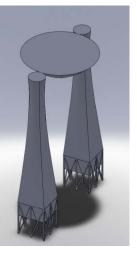
PPIV

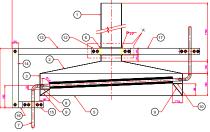
Passive Flow Control

- Float and follower is used to achieve passive flow control
- As more heat is stored, the MS level increases due to temperature increase
- The level increase raises the float and the follower blocks the slot area
- The blocking of the slot reduces the flow maintaining the heat extracted by the SGS constant.
- To enhance the level increase, a narrow portion of the vessel head is elevated.



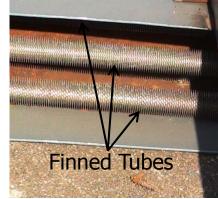
Passive flow control in SGS cum TES vessel




Passive air cooled Condenser Development

- Passive air cooled condensers enable solar power towers to be sited in deserts
- Also enables nuclear power plants to be sited in deserts
- Leads to some efficiency loss
- Low land cost
- Studies are in progress to enhance heat transfer using nano fluids

The central tower supporting the hyperboloid mirror can be used as passive air cooled condenser



Schematic of ACC test facility

Air cooled condenser test facility

Passive air cooled condenser

- Beam down concept has several advantages
- Technology developments required are identified and in progress. Important among them are
 - High efficiency power conversion system
 - Optimisation of optical components
 - Benchmarking of optical design
 - Passive air cooled ultimate heat sink
 - Passive controls
- Performance validation of integral receiver is required
- To be cost effective with solar PV, we need overall cycle efficiency to be more than 28%.
- Harnessing solar thermal energy economically is a technological challenge and requires advanced technology

