A Simplified Model for Dark Matter Interacting Primarily with Gluons

Free Meson - June 2, 2016

Gaurav Mendiratta

Kapteyn, Jacobus Cornelius (1922). "First

attempt at a theory of the arrangement and motion of the sidereal system".

Astrophysical Journal **55**: 302–327 doi:10.1086/142670."It is incidentally suggested that when the theory is perfected it may be possible to determine the amount of dark matter from its gravitational effect."

"For the moment we might very well can them DUNNOS (for Dark Unknown Non-reflective Non-detectable Objects Somewhere)." -Bill Bryson

A (incomplete) Review Of **DM Models**

Neutralino, singlino (NMSSM), Sterile Neutrino

Outline

- Scalar Dark Matter
- Gluphillic Scalar Dark Matter*
- Colored Scalar at hadron Colliders[#]
- GDSM at hadron colliders #

*Rohini M. Godbole, G.M. and Tim M.P. Tait [**JHEP 08 (2015) 064**] # Rohini M. Godbole, G.M., Ambresh Shivaji and Tim M.P. Tait [**1605.04756**]

Simplest DM Model

- SM Singlet WIMP scalar dark matter (χ).
- SM interactions need no additional local symmetries.
- Higgs Portal: $\lambda_p H^{\dagger} H \chi^* \chi$

Higgs Portal

Simplest DM Model

- SM Singlet WIMP scalar dark matter (χ)
- Higgs Portal: $\lambda_p H^{\dagger} H \chi^* \chi$
- BSM Scalars:
 - ϕ scalar charged under SU(3)_C.
 - $\circ \chi$ SM singlet scalar

$$\lambda_d \phi^\dagger \phi \, \chi^* \chi$$

- Renormalizable operator allows, the unusual, DM-Gluon coupling.
 - Rich collider Signatures

 $\mathcal{L} = \left(\mathcal{D}_{\mu}\phi\right)^{2} + \left(\partial_{\mu}\chi\right)^{2} + \lambda_{d}\phi^{\dagger}\phi\chi^{\star}\chi$ $+\eta\epsilon^{\alpha\beta\gamma}\epsilon_{ijk}u^{i}_{R\alpha}u^{j}_{R\beta}\phi^{k}_{\gamma}+h.c.$

MFV formalism with flavor SU(3)_R to avoid flavor constraints on colored scalar-quark couplings. (see for a review: J.Arnold et.al. JHEP 1001, 073 (2010))

Gluphillic DM Model

- A DM model with a colored scalar allows for a rich set of collider signatures.
- The signatures of a colored scalar itself depend on the additional flavor/discrete symmetries.
- DM-scalar and therefore, DM-SM interactions are independent.
- A Z₂ typically invoked to stabilize DM also may apply to φ.

Relic Density

Figure : Constraints on masses of the DM ' χ ' and colored scalar ' ϕ '. The color contour represent product of coupling and color factor for a representation r and number of flavors N_f .

Relic Density

Figure : Constraints on masses of the DM ' χ ' and colored scalar ' ϕ '.

Direct Detection

• Nucleons interact with DM via loops.

Figure : Constraints from Lux data on $\frac{\lambda_d}{m_{\phi}^2}$ and m_{χ} for color representation r and number of flavors N_f .

Colored Scalar

• Representative Feynman diagrams.

Collider Constraints on Colored Scalar

- BSM coupling independent bounds on masses of the colored scalar which couples to top quark.
 - The cross-section is calculated with a k-factor of 1.7.

Collider Constraints on Colored Scalar

The constraints are extended by the tt + 1j search[1209.6593,ATLAS]. The purple region is ruled out
by pair production of scalars via gluon fusion.

DM Signature at Colliders:Monojet

• Effective Field Theory: $\frac{\alpha_s}{M^2} G^{\mu\nu}_{\ a} G_{\mu\nu}^{\ a} \chi^{\dagger} \chi$

•
$$\frac{\lambda_d T_r}{48\pi M^2} \le \frac{1}{(207 GeV)^2}$$

Monojet: EFT

• EFT Fails for small mediator masses and large cuts. Complete loop calculation is necessary.

Monojet: Loop Calculation

- Monojet amplitude at 1-loop is calculated with 3 methods:
- By hand > Integrated using OneLoop library
- FeynRules > FeynArts > FormCalc > LoopTools
- FeynRules (NLOCT) > Madgraph (NLOCT)

Monojet: Madgraph

• In large *p*_T regions, Madgraph shows large fluctuations.

Monojet: Initial State Dependence

Monojet: EFT vs Loops

$$\lim_{M_{\phi} \to Large} iM(gg \to \chi\chi^{*}) \to \lambda_{d}g_{s}^{2}\delta^{a_{1}a_{2}}\left(\frac{-i}{96\pi^{2}M_{\phi}^{2}}\right)$$

$$(p_{1}^{\mu_{2}}p_{2}^{\mu_{1}} - g^{\mu_{1}\mu_{2}}p_{1}, p_{2})$$

A factor of $\frac{\lambda_d}{96\pi^2}$ is multiplied with the EFT cross section to compare with the loops.

Monojet: EFT vs Loops

Loop calculation vs EFT ratio at 8 TeV LHC.

 $pp \rightarrow \chi \chi^* j$

 $m_{\chi} = 1 GeV$

 $\lambda = 1$

Monojet: EFT vs Loops

Loop calculation vs EFT ratio at 13 TeV LHC.

• Constraints from CMS [Eur. Phys.J. C75 no. 5, (2015) 235] monojet

• Constraints from CMS [Eur. Phys.J. C75 no. 5, (2015) 235] monojet

• Constraints from run-II, ATLAS monojet search 1604.07773

• Constraints from run-II, ATLAS monojet search 1604.07773

Monojet: Projections

Reach of LHC-13 in high luminosity limit to constraint GDSM.

Monojet: Projections

• Reach of Future Circular (hadron) Collider to constraint GDSM.

Summary: Gluphillic DM

- We propose a model where a scalar DM preferentially couples with gluons.
- We find that tree-level annihilation gives the correct relic density of DM.
- We calculate the loop-induced monojet process and find that effective field theory underestimates the cross section by a factor of 2 when mediator mass is comparable to the cuts.

Summary: Gluphillic DM

- Colored scalars which can decay give a rich signature at LHC and can be discovered in multi-jet final state searches.
- With the assumption of a light dark matter (1GeV) color triplet scalar can be constrained up to 50 GeV with high luminosity at LHC.
- With 3 inv-ab, LHC can discover a color octet mediator with mass ~200 GeV and dim 15 mediator of mass 500 GeV.
- FCC can probe much larger masses up to TeV scale within a low $300 f b^{-1}$ luminosity.

Questions & Comments

How dark is DM? Astrophysical Signatures

- 3.5 KeV line
- GeV excess
- DM self couplings
 - o Abel 3827. (Mon.Not.Roy.Astron.Soc. 449 (2015) 4, 3393-3406)

Unitarity: Color octet scalar

Monojet: Projections

Reach of LHC-14 in high luminosity limit to constraint GDSM.

