

NISHITA DESAI INSTITUT FÜR THEORETISCHE PHYSIK (ITP), HEIDELBERG

Based on work done with: J. Ellis, F. Luo and J. Marrouche; J. Bramante, P. Fox, A. Martin, B. Ostdiek, T. Plehn;.

> Phys. Rev. D90, 055031 Phys.Rev. D93 (2016) 063525

SUSY DARK MATTER @ THE LHC AND BEYOND

15 Sep 2016 TIFR

HINTS FROM ASTROPHYSICS

 $\Omega_m h^2 = 0.1415 \pm 0.0019$ $\Omega_b h^2 = 0.02226 \pm 0.00023$ $\Omega_c h^2 = 0.1186 \pm 0.0020$

(DARK) MATTER POWER SPECTRUM

HOW TO CALCULATE THE RELIC DENSITY?

LOOKING FOR DM WINDS: DIRECT DETECTION

5

LOOKING FOR LINES IN THE SKY: INDIRECT DETECTION

WHY USE COLLIDERS?

WE HAVE ONE, MIGHT AS WELL USE IT!

BUT ALSO...

IT TURNS OUT, COLLIDERS CAN DO THINGS OTHER EXPERIMENTS CAN'T — BETTER SPIN DEPENDENT SENSITIVITY + CONSTRAIN LOW RECOIL REGION + LOOK FOR ACCOMPANYING PARTICLES

HOW DOES ATLAS/CMS MAKE OBSERVATIONS? — Objects, cuts, statistics

OBSERVING LSP PRODUCTION AT THE LHC: JETS + MET

HOW DO THEORISTS DETERMINE WHAT SIGNALS FOR THEIR THEORY WILL LOOK LIKE AT A COLLIDER EXPERIMENT?

TO MODEL DM WE NEED TO KNOW:

Does it couple directly to some SM particle?

If there is a mediator, how does the mediator couple to SM? to DM?

COLLIDER SEARCHES: A COMPLEMENTARY VIEW

Name	Operator	Coefficient
D1	$ar{\chi}\chiar{q}q$	m_q/M_*^3
D2	$ar{\chi}\gamma^5\chiar{q}q$	im_q/M_*^3
D3	$ar{\chi}\chiar{q}\gamma^5 q$	im_q/M_*^3
D4	$ar{\chi}\gamma^5\chiar{q}\gamma^5q$	m_q/M_*^3
D5	$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$	$1/M_{*}^{2}$
D6	$ar{\chi}\gamma^{\mu}\gamma^5\chiar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
D8	$\bar{\chi}\gamma^{\mu}\gamma^5\chi\bar{q}\gamma_{\mu}\gamma^5q$	$1/M_{*}^{2}$
D9	$\bar{\chi}\sigma^{\mu u}\chi\bar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{lphaeta}q$	i/M_*^2
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$
D13	$\bar{\chi}\chi G_{\mu u}\tilde{G}^{\mu u}$	$i\alpha_s/4M_*^3$
D14	$ar{\chi}\gamma^5\chi G_{\mu u} ilde{G}^{\mu u}$	$\alpha_s/4M_*^3$

Name	Operator	Coefficient
C1	$\chi^\dagger \chi ar q q$	m_q/M_*^2
C2	$\chi^\dagger \chi ar q \gamma^5 q$	im_q/M_*^2
C3	$\chi^{\dagger}\partial_{\mu}\chi \bar{q}\gamma^{\mu}q$	$1/M_{*}^{2}$
C4	$\chi^{\dagger}\partial_{\mu}\chi\bar{q}\gamma^{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
C5	$\chi^{\dagger}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^2$
C6	$\chi^{\dagger}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^2$
R1	$\chi^2 ar q q$	$m_q/2M_*^2$
R2	$\chi^2 ar q \gamma^5 q$	$im_q/2M_*^2$
R3	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/8M_*^2$
R4	$\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i\alpha_s/8M_*^2$

Goodman et al. (2010)

CMS LIMITS ON EFT OPERATORS

14

Original idea of "EFT":

 $\bar{q}q\frac{g}{p^2-M^2}\bar{\psi}\psi \xrightarrow{M\gg p} \frac{g}{M^2}\bar{q}q\bar{\psi}\psi$

So how does one live with:

Option 2: The about the size as a second provided by the particles.

FERMIONIC SPIN-1 SPIN-0 DM **MAJORANA** DIRAC 4 5 3 2 2' Mediator SPIN-1 SPIN-0

HOW TO WRITE A SIMPLIFIED MODEL?

SIMPLIFIED MODELS FOR THE LHC

$$\mathcal{L}_{S} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - m_{S}^{2} S^{2} + \sum g_{s\chi\bar{\chi}} \bar{\chi}\chi S + \sum g_{sq\bar{q}} \bar{q}q S + \bar{\chi}(i\partial_{\mu}\gamma^{\mu} - m_{\chi})\chi$$
$$\mathcal{L}_{P} = \frac{1}{2} \partial_{\mu} P \partial^{\mu} P - m_{P}^{2} P^{2} + \sum g_{s\chi\bar{\chi}} \bar{\chi}\gamma^{5}\chi P + \sum g_{sq\bar{q}} \bar{q}\gamma^{5}q P + \bar{\chi}(i\partial_{\mu}\gamma^{\mu} - m_{\chi})\chi$$
$$\mathcal{L}_{T} = \frac{1}{2} D_{\mu} T D^{\mu} T - m_{T}^{2} T^{2} + \sum g_{T\chi\bar{\chi}}(\bar{\chi}qT^{*} + \text{c.c.}) + \bar{\chi}(i\partial_{\mu}\gamma^{\mu} - m_{\chi})\chi$$

$$\mathcal{L}_{Z'} = \sum_{\substack{g_{Z'\chi\bar{\chi}}\bar{\chi}\bar{\chi}\gamma^{\mu}\chi Z'^{\mu} + \sum_{\substack{g_{Z'q\bar{q}}}} \bar{q}\gamma^{\mu}qZ'^{\mu}} + \bar{\chi}(i\partial_{\mu}\gamma^{\mu} - m_{\chi})\chi + \text{gaugeterms}}$$

$$\mathcal{L}_{A'} = \sum_{\substack{q \in \chi_{\bar{\chi}} \\ \bar{\chi} = \chi_{\bar{\chi}} \\ \bar{\chi} = \chi_{\bar{\chi}} \\ - \bar{\chi} (i\partial_{\mu}\gamma^{\mu} - m_{\chi})\chi + \text{gaugeterms}} \overline{q} \gamma^{\mu} \gamma^{5} q A'^{\mu}$$

DM IN SUSY

I.Find parameter space that gives the right relic density

2.Look at Direct/Indirect/Collider constraints (both present and future expectations)

PART I: DIRECT ANNIHILATION

RELIC SURFACE WITH SE

 $M_1, M_2, \mu, \text{ and } \tan \beta$

 $\Omega h^2 = 0.120 \pm 0.005$

$$\begin{split} \Omega_{\tilde{W}}h^2 \simeq 0.12 \left(\frac{m_{\tilde{\chi}}}{2.1 \text{ TeV}}\right)^2 \xrightarrow{\text{SE}} 0.12 \left(\frac{m_{\tilde{\chi}}}{2.6 \text{ TeV}}\right)^2 \, . \\ \Omega_{\tilde{H}}h^2 \simeq 0.12 \left(\frac{m_{\tilde{\chi}}}{1.13 \text{ TeV}}\right)^2 \xrightarrow{\text{SE}} 0.12 \left(\frac{m_{\tilde{\chi}}}{1.14 \text{ TeV}}\right)^2 \end{split}$$

MASS SPLITTING

RELIC SURFACE WITH SE

$\Omega h^2 = 0.120\pm 0.005$

$$\begin{split} \Omega_{\tilde{W}}h^2 \simeq 0.12 \left(\frac{m_{\tilde{\chi}}}{2.1 \text{ TeV}}\right)^2 &\xrightarrow{\text{SE}} 0.12 \left(\frac{m_{\tilde{\chi}}}{2.6 \text{ TeV}}\right)^2 \ . \\ \Omega_{\tilde{H}}h^2 \simeq 0.12 \left(\frac{m_{\tilde{\chi}}}{1.13 \text{ TeV}}\right)^2 &\xrightarrow{\text{SE}} 0.12 \left(\frac{m_{\tilde{\chi}}}{1.14 \text{ TeV}}\right)^2 \end{split}$$

COUPLINGS

$$g_{Z\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}} = \frac{g}{2\cos\theta_{w}} \left(|N_{13}|^{2} - |N_{14}|^{2} \right)$$
$$g_{h\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}} = \left(gN_{11} - g'N_{12} \right) \left(\sin\alpha N_{13} + \cos\alpha N_{14} \right)$$
$$g_{W\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{+}} = \frac{g\sin\theta_{w}}{\sqrt{2}\cos\theta_{w}} \left(N_{14}V_{12}^{*} - \sqrt{2}N_{12}V_{11}^{*} \right) ,$$

SI DIRECT DETECTION LIMITS

SD DIRECT DETECTION LIMITS

DIRECT DETECTION

Excluded: XENON100• |LUX•• **Projected Exclusion**: XENON1T••• |LZ••••

ANNIHILATION INTO PHOTONS

(POTENTIAL) COLLIDER SEARCHES

PUTTING IT ALL TOGETHER

- Pure winos can best be detected with tracks + indirect detection
- Pure Higgsinos as well as Wino-Higgsinos can be detected with direct (and/or) indirect detection
- •Bino-Winos can only be detected with collider searches

Almost all of SUSY DM can be detected within next 10-20 years!

PART II: STAU CO-ANNIHILATION

 $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu)$

Advantage: fewer parameters ⇒ easy to test

Disadvantage: fewer parameters ⇒ not all variants are covered ⇒ "indirect" limits on sparticle masses

HIGGS MASS IN THE (C)MSSM

QUESTIONS TO ASK:

- 1. Does it give the correct Higgs mass?
- 2. Does it give the right relic density?
- 3. Does it satisfy constraints from the LHC?

All of them in the stau co-annihilation strip!

WHAT DOES THE STAU CO-ANNIHILATION STRIP LOOK LIKE TODAY?

LIFETIME OF THE STAU

MET-BASED SEARCHES

2-6 JETS + MET

Requirement	Signal Region		
nequirement	2jW	3j	
$E_{\rm T}^{\rm miss}[{\rm GeV}] >$	16	0	
$p_{\rm T}(j_1) \; [{\rm GeV}] >$	130		
$p_{\rm T}(j_2) \; [{\rm GeV}] >$	60)	
$p_{\rm T}(j_3) \; [{\rm GeV}] >$		60	
$p_{\rm T}(j_4) \; [{\rm GeV}] >$			
$\Delta \phi(\text{jet}_{1,2,(3)}, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$	0.4		
$\Delta \phi(\text{jet}_{i>3}, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$			
W candidates	$2(W \to j)$	_	
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} \; [{\rm GeV}^{1/2}] >$		<u> </u>	
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j})>$	0.25	0.3	
$m_{\rm eff}({\rm incl.}) \ [{\rm GeV}] >$	1800	2200	

	L T	1 <u>1</u> 1	· •	,	1 <u>1</u> 1	· •	· ·		,
(GeV/c^2)	(GeV/c^2)	Exp.	Obs.	Acc.	Exp.	Obs	Acc.	Exp.	Obs.
Direct+indirect produced stau — tracker+TOF a							alysis		
126	>40	0.0046	0.0035	0.29	0.0042	0.0042	0.25	0.0074	0.0065
308	>190	0.00094	0.0015	0.63	0.00029	0.00028	0.56	0.16	0.21
494	>330	0.00079	0.00084	0.74	0.00023	0.00024	0.66	1.9	1.9
Direct produced stau — tracker+T					DF analys	S			
126	>40	0.0056	0.0046	0.26	0.0044	0.0043	0.24	0.18	0.16
308	>190	0.0011	0.0017	0.54	0.00035	0.00035	0.46	0.62	0.66
494	>330	0.00084	0.00088	0.69	0.00025	0.00026	0.61	4.7	5.0

ATLAS: DISAPPEARING TRACK SEARCH

ATLAS: DISAPPEARING TRACK SEARCH

TABLE III. Numbers of observed and expected background events as well as the probability that a background-only experiment is more signal-like than observed (p_0) and the model-independent upper limit on the visible cross-section ($\sigma_{vis}^{95\%}$) at 95% CL.

	$p_{\rm T}^{\rm track} > 75 ~{ m GeV}$	$p_{\rm T}^{\rm track} > 100 ~{ m GeV}$	$p_{\rm T}^{\rm track} > 150 ~{\rm GeV}$	$p_{\rm T}^{\rm track} > 200 ~{ m GeV}$
Observed events	59	36	19	13
Expected events	48.5 ± 12.3	37.1 ± 9.4	24.6 ± 6.3	18.0 ± 4.6
p_0 value	0.17	0.41	0.46	0.44
Observed $\sigma_{\rm vis}^{95\%}$ [fb]	1.76	1.02	0.62	0.44
Expected $\sigma_{\rm vis}^{95\%}$ [fb]	$1.42^{+0.50}_{-0.39}$	$1.05_{-0.28}^{+0.37}$	$0.67^{+0.27}_{-0.19}$	$0.56_{-0.16}^{+0.23}$

METHOD

Simulate events using Pythia8

ND, P. Skands (2012); T. Sjostrand, ND, et al. (2014)

- ➡ Gaussian smearing for jets/leptons
- Validate against published cut flow or efficiencies for benchmarks
- → Look at limits from each of the three searches.

Instead of focussing only on the best fit parameters, we examine the co-annihilation strip plotted in terms of $(m_{\frac{1}{2}}, \Delta m)$ in various slices $\tan \beta = 10, 40$

$$A_0 = 0, -2.5m_0$$

EFFECT OF MET AND MEFF CUTS

CMS: EXOTIC CHARGED TRACKS

Mass	M req.	σ (pb) ($\sqrt{s} = 7$ TeV)			σ (pb)	$(\sqrt{s} = 8 \mathrm{Te})$	eV)
(GeV/c^2)	(GeV/c^2)	Exp.	Obs.	Acc.	Exp.	Obs.	Acc.
	— track	er+TOF an	alysis				
126	>40	0.0046	0.0035	0.29	0.0042	0.0042	0.25
308	>190	0.00094	0.0015	0.63	0.00029	0.00028	0.56
494	>330	0.00079	0.00084	0.74	0.00023	0.00024	0.66
Direct produced stau — tracker+TOF analysis							S
126	>40	0.0056	0.0046	0.26	0.0044	0.0043	0.24
308	>190	0.0011	0.0017	0.54	0.00035	0.00035	0.46
494	>330	0.00084	0.00088	0.69	0.00025	0.00026	0.61

ATLAS: DISAPPEARING TRACK SEARCH

TABLE III. Numbers of observed and expected background events as well as the probability that a background-only experiment is more signal-like than observed (p_0) and the model-independent upper limit on the visible cross-section $(\sigma_{vis}^{95\%})$ at 95% CL.

	$p_{\rm T}^{\rm track} > 75 ~{ m GeV}$	$p_{\rm T}^{\rm track} > 100 ~{ m GeV}$	$p_{\rm T}^{\rm track} > 150 ~{ m GeV}$	$p_{\rm T}^{\rm track} > 200 ~{ m GeV}$
Observed events	59	36	19	13
Expected events	48.5 ± 12.3	37.1 ± 9.4	24.6 ± 6.3	18.0 ± 4.6
p_0 value	0.17	0.41	0.46	0.44
Observed $\sigma_{\rm vis}^{95\%}$ [fb]	1.76	1.02	0.62	0.44
Expected $\sigma_{\rm vis}^{95\%}$ [fb]	$1.42^{+0.50}_{-0.39}$	$1.05\substack{+0.37 \\ -0.28}$	$0.67^{+0.27}_{-0.19}$	$0.56^{+0.23}_{-0.16}$

COMBINATION OF ALL LIMITS

RESULTS:

PROJECTION TO 13 TEV@LHC WITH 300 FB⁻¹

CONCLUSIONS FOR STAU CO-ANNIHILATION

- LHC jets+MET search slightly weakened in region where staus are long-lived. The limit is close to probing the tip of the co-annihilation strip for tanß = 10.
- The stable track search for direct stau production (model ind.) rules out stau masses up to 336 345 GeV for m_{1/2} values of 800-850 GeV (stronger than the MET search!)
- This is improved to $m_{1/2}$ values of 930-1100 GeV when all stau production modes are taken into account.
- The model independent track search will be able to rule out the full strip for tanß = 40 with 75 fb⁻¹ at 13 TeV.