Fast flavor conversions: supernova neutrinos

Manibrata Sen

Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai, India.

February 2, 2017

Based on Arxiv. 1609.00528 (to be published in JCAP)

In collaboration with Basudeb Dasgupta(TIFR) and Alessandro Mirizzi(INFN, Bari).

A Core-Collapse Supernova : Neutrino conversions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Collective effects in a dense neutrino gas
- Flavor Conversions NEAR the core
- Results

A Core-Collapse Supernova: Neutrino conversions

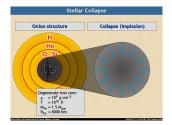
Outline of the talk

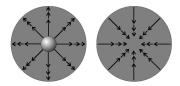
1 A Core-Collapse Supernova: Neutrino conversions

2 Collective effects in a dense neutrino gas

3 Flavor Conversions NEAR the core

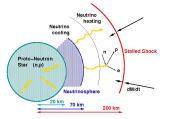
Supernova explosion





Collapse of degenerate core. Bounce and Shock.

Explosion of a massive $6-8~M_{\odot}$ star

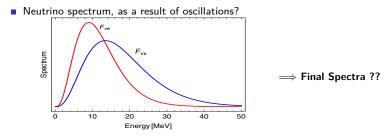


Stalled shock and accretion

Explosion!

Flavor Oscillations in dense media: Why do we care?

Flavor evolution in a dense media \rightarrow non-linear complicated problem \rightarrow can lead to collective effects.



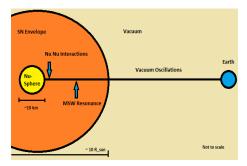
- Can confirm our idea of SN dynamics.
- Neutrino oscillations can have important impact on explosion dynamics as well as nucleosynthesis.

(日) (四) (三) (三) (三)

크

Prelude : Facts and Trivia

 Flavor conversions of supernova(SN) neutrinos - neutrino flavor conversions during the gravitational collapse of a massive star.



Illustrative of different length scales involved.

$$R_{\nu\text{-sphere}} \simeq 10 \text{ km}$$
, $R_{\text{coll}} \simeq 100 \text{ km}$, $R_{\text{MSW}} \simeq 1000 \text{ km}$ (1)

•
$$\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$$
 where $x = \mu, \tau$.

◆□ → ◆□ → ◆三 → ◆三 → ○へ ⊙

A Core-Collapse Supernova: Neutrino conversions

Ways to describe flavor oscillations

Schrodinger's equation for flavor states:

$$i\partial_t \begin{bmatrix} \nu_e \\ \nu_\mu \end{bmatrix} = \frac{\Delta m^2}{2E} \begin{bmatrix} \cos 2\vartheta & \sin 2\vartheta \\ \sin 2\vartheta & -\cos 2\vartheta \end{bmatrix} \begin{bmatrix} \nu_e \\ \nu_\mu \end{bmatrix}$$

Neutrino flavor density matrix

$$\rho = \begin{bmatrix} \langle \nu_e | \nu_e \rangle & & \langle \nu_e | \nu_\mu \rangle \\ \langle \nu_\mu | \nu_e \rangle & & \langle \nu_\mu | \nu_\mu \rangle \end{bmatrix}$$

Use EoM $id_t \rho = [H, \rho]$

Expand density matrices in Pauli basis:

$$\rho = 1/2 [\operatorname{Tr}(\rho) + \mathbf{P} \cdot \sigma]$$
 and $H = \omega \mathbf{B} \cdot \sigma$

where $\omega = \frac{\Delta m^2}{2E}$ and $\mathbf{B} = \{\sin 2\vartheta, 0, \cos 2\vartheta\}.$

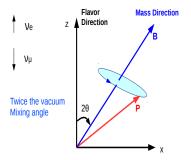
Gives a spin-precession equation

$$\dot{\mathbf{P}} = \omega \mathbf{B} \times \mathbf{P}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where \mathbf{P} is the polarisation vector.

Flavor oscillation as spin precession



$\dot{\mathbf{P}}=\omega\mathbf{B}\times\mathbf{P}$

Flavor polarization vector precesses around the mass direction with frequency $\omega = \frac{\Delta m^2}{2E}$

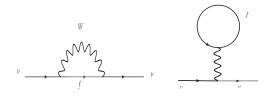
- 2

(日) (월) (분) (분)

C.W Kim et al.(2006)

Interacting Hamiltonian

- Vacuum oscillation.
- Matter effect : forward scattering with electrons.



L. Wolfenstein (1977), S. Mikheyev, A. Smirnov (1985)

<ロ> (四) (四) (三) (三) (三)

■ Nu-Nu interaction : scattering with same/different flavors.

J. Pantaleone (1992)

æ

Non-linearity from neutrino-neutrino interactions

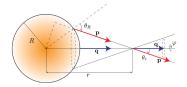
• Effective Hamiltonian $H = H_{vac} + H_{MSW} + H_{\nu\nu}$ where

$$H_{\text{vac}} = \omega = \frac{M^2}{2E_p}$$

$$H_{\text{MSW}} = \lambda = \sqrt{2}G_F N_e \text{ diag}\{1, 0, 0\}$$

$$H_{\nu\nu} = \sqrt{2}G_F \int \frac{d^3q}{(2\pi)^3} (1 - \vec{v_p} \cdot \vec{v_q})(\rho_q - \bar{\rho_q})$$

Define $\mu = \sqrt{2}G_F N_{\nu}$.



H. Duan et al.(2006)

•
$$H_{\nu\nu} \sim \mu(\mathbf{P} - \bar{\mathbf{P}}) \Rightarrow$$
 non-linear term \Rightarrow collective effects.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Collective effects in a dense neutrino gas

Outline of the talk

1 A Core-Collapse Supernova: Neutrino conversions

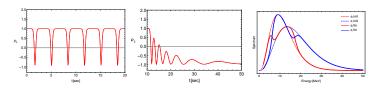
2 Collective effects in a dense neutrino gas

3 Flavor Conversions NEAR the core

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Collective effects : new phenomena

Synchronized oscillations: ν and $\bar{\nu}$ of all energies oscillate with the same frequency.



$$\dot{\mathbf{P}} = \omega \mathbf{B} \times \mathbf{P} + \mu (\mathbf{P} - \bar{\mathbf{P}}) \times \mathbf{P} \longrightarrow \mu >> \omega$$

- Coherent $\nu_e \bar{\nu}_e \leftrightarrow \nu_x \bar{\nu}_x$ oscillations. Intermediate μ .
- Realistic declining μ can cause complete conversion.
- ν_e and ν_x spectra swap completely, but only within certain energy ranges. Occurs in both hierarchies.

G. Raffelt et al.(2007), B. Dasgupta et al.(2009)

< □ > < @ > < 注 > < 注 > ... 注

Bipolar Oscillations : Linear stability analysis

- \blacksquare Deep inside \rightarrow high density \rightarrow flavor and mass states almost equal.
- \blacksquare Consider 2 flavors ν_e and ν_x . The flavor density matrices

$$\rho = \begin{bmatrix} \rho_{ee} & \rho_{ex} \\ \rho_{xe} & \rho_{xx} \end{bmatrix}$$

The EoM is given by

$$id_t\rho_p = i(\partial_t + \vec{v_p}.\vec{\nabla})\rho_p = [H_p, \rho_p]$$

where,

$$H_{p} = \underbrace{\frac{M^{2}}{2E_{p}}}_{\omega_{p}} + \underbrace{\sqrt{2}G_{F}N_{e}}_{\lambda} + \sqrt{2}G_{F}N_{\nu} \int \frac{d^{3}q}{(2\pi)^{3}} (1 - \vec{v_{p}}.\vec{v_{q}})(\rho_{q} - \bar{\rho_{q}})$$

- $\omega < 0$ for antineutrino.
- Neglect collisions.
- Can linearise in small off-diagonal elements.

$$\rho = \frac{\mathrm{Tr}\rho}{2} + \frac{g_{\omega v\phi}}{2} \begin{bmatrix} s & S\\ S^* & -s \end{bmatrix}$$

Linear stability analysis

- Here $s^2 + S^2 = 1$. Assume $S \ll 1$ and linearise in S.
- Look for solutions far from neutrinosphere $(r >> R_{ns})$.
- Take $S \sim Q_{\omega v z} e^{-i\Omega_t t i\vec{\Omega_r}.\vec{r}}$. This gives us an eigenvalue equation.

$$\begin{split} i(\Omega_t + \vec{v} \cdot \vec{\Omega_r})Q_{\omega vz} &= \left(\omega + \lambda + \mu \int \frac{d\Gamma'}{(2\pi)} \left(1 - v_z v'_z - \vec{v_T} \cdot \vec{v_T}'\right) g_{\omega'v'\phi'}\right) Q_{\omega vz} \\ &- \mu \int \frac{d\Gamma'}{(2\pi)} \left(1 - v_z v'_z - \vec{v_T} \cdot \vec{v_T}'\right) g_{\omega'v'\phi'} Q_{\omega'v'z'} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

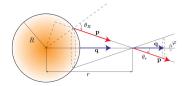
- Complex values of $\Omega = \gamma + i\kappa$ with $\kappa > 0$ signals an instability.
- Evolution in space : Put $\partial_t \longrightarrow 0$.
- Evolution in time : Put $\vec{v} \cdot \vec{\nabla} = 0$.

Collective effects in a dense neutrino gas

Linear stability analysis

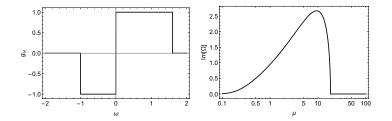
- Simplifications:
 - Single angle emission
 - 2 Spherical symmetry. Large distance approximation.

H. Duan et al.(2006)



■ Symmetries not sacrosanct. Breaking of symmetries leads to interesting results → Multi angle matter suppression, instability in NH due to breaking of symmetries.

LSA Example: Box Spectrum



A. Dighe et al.(2011)

<ロト <四ト <注入 <注下 <注下 <

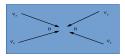
- Spectrum $g_{\omega} = box$ spectra.
- Identical angular distributions for all neutrinos.
- Growth rate of instability Im $\Omega_r \propto \sqrt{\omega\mu} > \omega$. Significant flavor conversions at $r \sim O(10^2)$ km from neutrinosphere.
- Im Ω_r non-zero for a certain range of μ .

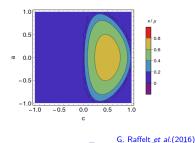
Faster Conversions

- Pre-2006 : Flavor conversions mainly in MSW regions $r \sim O(10^3)$ km. MSW conversions $\propto \omega$
- Post-2006 : Collective effects. Significant flavor conversions at $r \sim O(10^2)$ km from neutrinosphere. Rates Im $\Omega \propto \sqrt{\omega \mu}$.
- Faster conversions: Im $\Omega \propto O(\mu) \sim 10^5 \omega$? Can occur for massless neutrinos. Non-trivial angular distributions? Near the source.

R.F Sawyer(2015)

Simplest model. Shows fast conversion. Still far from source.





000

Flavor Conversions NEAR the core

Outline of the talk

1 A Core-Collapse Supernova: Neutrino conversions

2 Collective effects in a dense neutrino gas

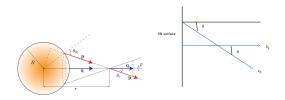
3 Flavor Conversions NEAR the core

4 Results

▲□▶▲圖▶▲≣▶▲≣▶ ▲国▼ のへの

Aim of our work

- Closer look at conditions for fast flavor conversions.
- Do a linear stability analysis, and check for fast conversions near the source of emission $r \sim \mathcal{O}(1)$ m.
- Discard the "bulb model", and because of the near field effect, model the source as an infinitely long plane.

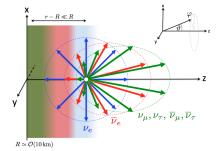


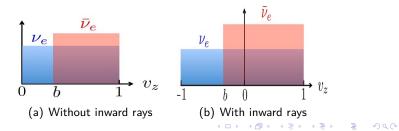
- Use flavor dependent angular spectrum. Realistic approximation.
- Include backward going modes also.
- Consider evolution in time (stationary soln) as well as in space (homogeneous soln).

< □ > < @ > < 注 > < 注 > ... 注

Angular spectrum of emission

Consider different cones of emission for ν and $\bar{\nu}$. Can consider inward going rays also.





Performing the LSA

The eigenvalue eqn from LSA is

$$\begin{split} i(\Omega_t + \vec{v} \cdot \vec{\Omega_r}) Q_{\omega vz} &= \left(\omega + \lambda + \mu \int \frac{d\Gamma'}{(2\pi)} \left(1 - v_z v'_z - \vec{v_T} \cdot \vec{v_T}' \right) g_{\omega' v' \phi'} \right) Q_{\omega vz} \\ &- \mu \int \frac{d\Gamma'}{(2\pi)} \left(1 - v_z v'_z - \vec{v_T} \cdot \vec{v_T}' \right) g_{\omega' v' \phi'} Q_{\omega' v' z'} \end{split}$$

Define

$$\begin{aligned} \epsilon &= \int \frac{d\Gamma}{2\pi} \ g_{\omega v_z \phi}, \quad \epsilon_v = \int \frac{d\Gamma}{2\pi} v_z \ g_{\omega v_z \phi} \\ \epsilon_{vs(c)} &= \int \frac{d\Gamma}{2\pi} \sqrt{1 - v_z^2} \ \mathbf{s}_{\phi}(\mathbf{c}_{\phi}) g_{\omega v_z \phi} \end{aligned}$$

Equation simplifies

$$\begin{bmatrix} \omega + \lambda - \Omega_t + \mu \epsilon - \mu v_z \epsilon_v - \mu \sqrt{1 - v_z^2} \left(\epsilon_{vc} c_{\phi} + \epsilon_{vs} s_{\phi} \right) \end{bmatrix} Q = \\ \mu \int \frac{d\Gamma'}{(2\pi)} \left(1 - v_z v_z' - \sqrt{(1 - v_z^2)(1 - v_z'^2)} c_{(\phi - \phi')} \right) g_{\omega' v_z' \phi'} Q'$$

Performing the LSA

 \blacksquare Write the functional form of Q to be

$$Q = \frac{a + bv_z + c \sqrt{1 - v_z^2} c_\phi + d \sqrt{1 - v_z^2} s_\phi}{\left[\omega + \lambda - \Omega_t + \mu\epsilon - \mu v_z \epsilon_v - \mu \sqrt{1 - v_z^2} \left(\epsilon_{vc} c_\phi + \epsilon_{vs} s_\phi\right)\right]}$$

Eigenvalue equation

$$\begin{bmatrix} I_{0,0}^{0,0} - 1 & I_{1,0}^{0,0} & I_{0,1}^{1,0} & I_{0,1}^{0,1} \\ -I_{1,0}^{0,0} & -I_{2,0}^{0,0} - 1 & -I_{1,1}^{1,0} & -I_{1,1}^{0,1} \\ -I_{0,1}^{1,0} & -I_{1,1}^{1,0} & -I_{0,2}^{2,0} - 1 & -I_{0,2}^{1,1} \\ -I_{0,1}^{0,1} & -I_{1,1}^{0,1} & -I_{0,2}^{0,2} - I \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = 0$$

where (using $v_z = c_{\theta}$)

$$I_{m,n}^{\alpha,\beta} = \mu \int \frac{d\Gamma}{2\pi} \left(\frac{\mathbf{c}_{\phi}^{\alpha} \mathbf{s}_{\phi}^{\beta} \mathbf{c}_{\theta}^{m} \mathbf{s}_{\theta}^{n}}{\left[\omega + \lambda - \Omega_{t} + \mu\epsilon - \mu\mathbf{c}_{\theta}\epsilon_{v} - \mu\mathbf{s}_{\theta} \left(\epsilon_{vc}\mathbf{c}_{\phi} + \epsilon_{vs}\mathbf{s}_{\phi} \right) \right]} \right) g_{\omega v_{z}\phi}$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Equation of motion

For simplicity, assume the initial spectrum of emission is independent of φ. This simplifies the eigenvalue matrix to a block diagonal form.

$$\begin{bmatrix} I_{0,0} - 1 & I_{1,0} & 0 & 0 \\ -I_{1,0} & -I_{2,0} - 1 & 0 & 0 \\ 0 & 0 & -I_{0,2}/2 - 1 & 0 \\ 0 & 0 & 0 & -I_{0,2}/2 - 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = 0 \quad (2)$$

The eigenvalue equations are, for the axially symmetric case :

$$(I_{0,0} - 1)(I_{2,0} + 1) - I_{1,0}^2 = 0$$
(3)

and for the axial symmetry breaking case:

$$\left(\frac{I_{0,2}}{2} + 1\right) = 0 \tag{4}$$

(日) (四) (문) (문) (문)

ree-Meson
Decilie

Outline of the talk

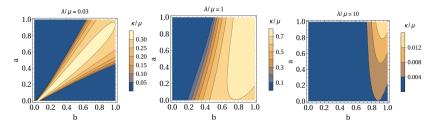
1 A Core-Collapse Supernova: Neutrino conversions

2 Collective effects in a dense neutrino gas

3 Flavor Conversions NEAR the core

Results: Evolution in space

Growth rates $\kappa = \text{Im}(\Omega_r)$ in units of $\mu \simeq 10^5 \text{ km}^{-1} \Rightarrow \text{large growth}$.

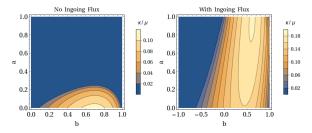


<ロト <四ト <注入 <注下 <注下 <

Instability rates for different values of a and b, for three different values of $\lambda/\mu=$ 0.03, 1, and 10.

- $a \Rightarrow$ neutrino-antineutrino asymmetry. $b \Rightarrow$ angular asymmetry of emission.
- No instability for b = 0. Need non-trivial angular spectrum.
- κ maximum for $\lambda \sim \mu$.

Results: Evolution in time



Rates for different values of a and b, for evolution in time, without including inward going modes (left panel) and including inward going modes (right panel).

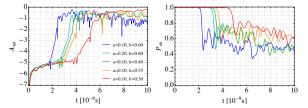
- No matter suppression.
- Inclusion of inward modes increases the growth rates, making fast conversions stronger.

(日) (部) (目) (目) (日)

크

Growth rates : Full Numerical Solution

Numerical solution of the fully nonlinear EoMs(no inward going modes).
 Matches with linear stability in linear regime.



Left : Instability growth rates $A_{ex}(t) = \log[S(t)]$. Right : Electron neutrino survival probability.

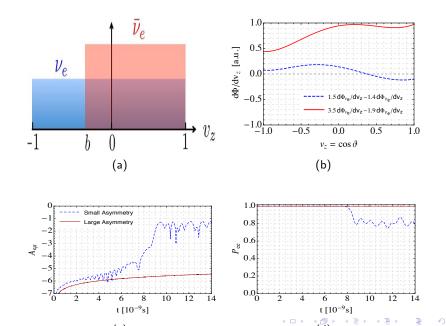
• Fast conversions at timescale of $t \sim O(10^{-8} {\rm sec}) \Rightarrow$ at distances of $r \sim O(1 {\rm m})$ from neutrinosphere.

《曰》 《聞》 《臣》 《臣》

크

• $P_{ee} \simeq 0.5 \Rightarrow$ flavor averaging.

Growth rates: Crossed Angular spectrum



- Look at dispersion relations evolution in space AND time. Study instability in Ω_t and Ω_r plane.
- Why do we need a crossing in the angular spectra?
- Is there true flavor averaging? Need to include collisions to have a clearer answer.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Spectra formation?

- Find fast conversions at a distance of $\sim {\cal O}(1~{\rm m})$ from the neutrinosphere.
- Flavor dependent angular spectrum seem to be essential for these fast conversions.
- Fast conversions lead to averaging of flavor information.
- Can be crucial for SN explosion and nucleosynthesis.

THANK YOU

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで