How Many Angels Can Dance on the Head of a Black Hole?

Tom Banks (work with W.Fischler)

Feruary 9, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

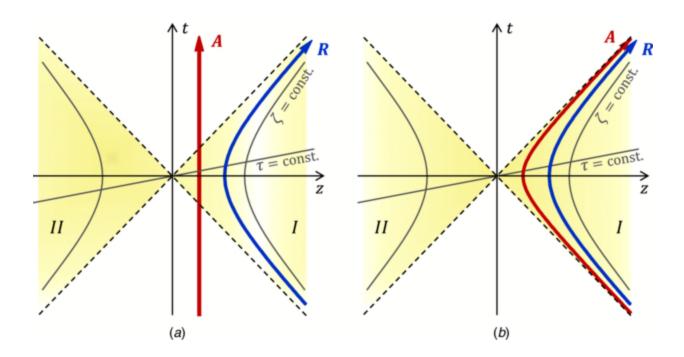
Hawking Radiation and Entropy Black Hole Entropy - Bekenstein Hawking, Gibbons and Unruh General Relativity as Hydrodynamics of the Area Law -Jacobson The Covariant Entropy/Holographic Principle - 't Hooft, Fischler, Susskind and Bousso There Are More Things in Heaven and Earth Than Are

Dreamed of in Your Quantum Field Theory

> Black Hole is a Surface of Finite Area Within Which Light is Trapped

> > ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

> Black Hole is a Surface of Finite Area Within Which Light is Trapped


 Hawking Area Thm.: Total Horizon Area of the Universe Increases

- Black Hole is a Surface of Finite Area Within Which Light is Trapped
- Hawking Area Thm.: Total Horizon Area of the Universe Increases
- ▶ Bekenstein: Classical Black Hole Would Violate 2nd Law: But dropping minimal energy qubit (photon of energy 1/R_S) on it increases R_S by 1 Planck unit of area. Area = Entropy !!?? . Implies non-zero temp. ~ 1/R_S by dE = TdS, but Bekenstein doesn't mention this.

- Black Hole is a Surface of Finite Area Within Which Light is Trapped
- Hawking Area Thm.: Total Horizon Area of the Universe Increases
- Bekenstein: Classical Black Hole Would Violate 2nd Law: But dropping minimal energy qubit (photon of energy 1/R₅) on it increases R₅ by 1 Planck unit of area. Area = Entropy !!??
 Implies non-zero temp. ~ 1/R₅ by dE = TdS, but Bekenstein doesn't mention this.

► Hawking uses QFT to demonstrate temp. and get the coefficient $S = A/4L_P^2$, $L_P^2 = G_N \hbar/c^3$.

- Black Hole is a Surface of Finite Area Within Which Light is Trapped
- Hawking Area Thm.: Total Horizon Area of the Universe Increases
- Bekenstein: Classical Black Hole Would Violate 2nd Law: But dropping minimal energy qubit (photon of energy 1/R₅) on it increases R₅ by 1 Planck unit of area. Area = Entropy !!??
 Implies non-zero temp. ~ 1/R₅ by dE = TdS, but Bekenstein doesn't mention this.
- ► Hawking uses QFT to demonstrate temp. and get the coefficient $S = A/4L_P^2$, $L_P^2 = G_N \hbar/c^3$.
- Geometric (but not quantum) understanding via Unruh, Gibbons and Hawking: GH show similar phenomenon for de Sitter horizon.

 QFT assigns infinite entropy to any causal diamond, no matter how small. With a cut-off K, entropy scales like (KR)³.

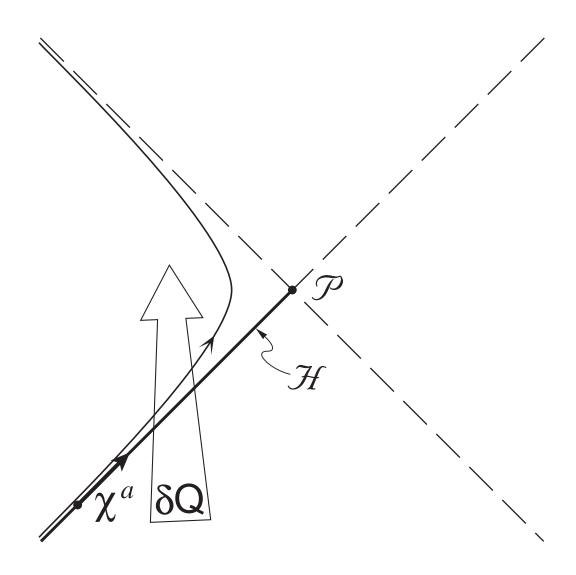
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- QFT assigns infinite entropy to any causal diamond, no matter how small. With a cut-off K, entropy scales like (KR)³.
- Mass of high entropy states with cutoff K⁴R³ > RM_P² unless cutoff scales to zero with R

- QFT assigns infinite entropy to any causal diamond, no matter how small. With a cut-off K, entropy scales like (KR)³.
- Mass of high entropy states with cutoff K⁴R³ > RM_P² unless cutoff scales to zero with R

• Condition for no Black Hole formation $S \leq (R/L_P)^{3/2}$

- QFT assigns infinite entropy to any causal diamond, no matter how small. With a cut-off K, entropy scales like (KR)³.
- Mass of high entropy states with cutoff K⁴R³ > RM_P² unless cutoff scales to zero with R
- Condition for no Black Hole formation $S \leq (R/L_P)^{3/2}$
- QFT/particle physics can't account for black hole entropy.


 't Hooft : Fundamental Theory will have only variables living on horizons (explaining area law).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 't Hooft : Fundamental Theory will have only variables living on horizons (explaining area law).
- ► Jacobson 1995 : If we assume $S = A/4L_P^2$ for holographic screen of any causal diamond, then $dE = TdS + Unruh + Raychauduri \rightarrow$ $n^{\mu}n^{\nu}(R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R - 8\pi G_N T_{\mu\nu}) = 0$ for every null vector. Uses Unruh trajectory of infinite acceleration $\rightarrow S = \ln \dim \mathcal{H}.$

- 't Hooft : Fundamental Theory will have only variables living on horizons (explaining area law).
- ► Jacobson 1995 : If we assume $S = A/4L_P^2$ for holographic screen of any causal diamond, then $dE = TdS + Unruh + Raychauduri \rightarrow$ $n^{\mu}n^{\nu}(R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R - 8\pi G_N T_{\mu\nu}) = 0$ for every null vector. Uses Unruh trajectory of infinite acceleration $\rightarrow S = \ln \dim \mathcal{H}.$
- That is Einstein's Equations (with cosmological constant undetermined) are the hydrodynamics of any quantum system obeying the area law!

- 't Hooft : Fundamental Theory will have only variables living on horizons (explaining area law).
- ► Jacobson 1995 : If we assume $S = A/4L_P^2$ for holographic screen of any causal diamond, then $dE = TdS + Unruh + Raychauduri \rightarrow$ $n^{\mu}n^{\nu}(R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R - 8\pi G_N T_{\mu\nu}) = 0$ for every null vector. Uses Unruh trajectory of infinite acceleration $\rightarrow S = \ln \dim \mathcal{H}.$
- That is Einstein's Equations (with cosmological constant undetermined) are the hydrodynamics of any quantum system obeying the area law!
- Implies QFT (in string theory we learn that all of QFT follows from the supersymmetric generalization of Einstein's equations in 11 dimensions) should only be quantized when discussing small fluctuations around the ground state.

 Fischler and Susskind - Extend Area/Entropy relation of causal diamond bounded by black hole horizon - to apparent horizon of cosmological space-times

 Fischler and Susskind - Extend Area/Entropy relation of causal diamond bounded by black hole horizon - to apparent horizon of cosmological space-times

• Implies early time equation of state *must* be $p = \rho$.

- Fischler and Susskind Extend Area/Entropy relation of causal diamond bounded by black hole horizon - to apparent horizon of cosmological space-times
- Implies early time equation of state *must* be $p = \rho$.
- Bousso extend FS et. al. to arbitrary causal diamond in arbitrary space-time.

- Fischler and Susskind Extend Area/Entropy relation of causal diamond bounded by black hole horizon - to apparent horizon of cosmological space-times
- Implies early time equation of state *must* be $p = \rho$.
- Bousso extend FS et. al. to arbitrary causal diamond in arbitrary space-time.
- Bousso (also TB-Fischler): entropy must be interpreted as log of dimension of the Hilbert space of the diamond.

- Fischler and Susskind Extend Area/Entropy relation of causal diamond bounded by black hole horizon - to apparent horizon of cosmological space-times
- Implies early time equation of state *must* be $p = \rho$.
- Bousso extend FS et. al. to arbitrary causal diamond in arbitrary space-time.
- Bousso (also TB-Fischler): entropy must be interpreted as log of dimension of the Hilbert space of the diamond.

Much of this was anticipated in Jacobson's paper.

► TB and Fischler: C.C. is not a local energy density, but a boundary condition relating proper time and area S(τ) when one or the other → ∞.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► TB and Fischler: C.C. is not a local energy density, but a boundary condition relating proper time and area S(τ) when one or the other → ∞.

• Theory of dS space has finite dimensional Hilbert space.

- ► TB and Fischler: C.C. is not a local energy density, but a boundary condition relating proper time and area S(τ) when one or the other → ∞.
- ► Theory of dS space has finite dimensional Hilbert space.
- Black Hole Metric

$$ds^{2} = -(1 - rac{R_{S}}{r} \pm rac{r^{2}}{R^{2}})dt^{2} + rac{dr^{2}}{(1 - rac{R_{S}}{r} \pm rac{r^{2}}{R^{2}})} + r^{2}d\Omega^{2}.$$
 $R = \sqrt{rac{3|\Lambda|}{8\pi G_{N}}}.$

- ► TB and Fischler: C.C. is not a local energy density, but a boundary condition relating proper time and area S(τ) when one or the other → ∞.
- ► Theory of dS space has finite dimensional Hilbert space.
- Black Hole Metric

$$ds^{2} = -(1 - rac{R_{S}}{r} \pm rac{r^{2}}{R^{2}})dt^{2} + rac{dr^{2}}{(1 - rac{R_{S}}{r} \pm rac{r^{2}}{R^{2}})} + r^{2}d\Omega^{2}.$$
 $R = \sqrt{rac{3|\Lambda|}{8\pi G_{N}}}.$

► That is, Localized excitation *decreases* entropy of dS. Entropy deficit is Boltzmann's law $\Delta S = -\frac{Mc}{2\pi\hbar R}$, at GH temp.

- ► TB and Fischler: C.C. is not a local energy density, but a boundary condition relating proper time and area S(τ) when one or the other → ∞.
- ► Theory of dS space has finite dimensional Hilbert space.
- Black Hole Metric

$$ds^{2} = -(1 - rac{R_{S}}{r} \pm rac{r^{2}}{R^{2}})dt^{2} + rac{dr^{2}}{(1 - rac{R_{S}}{r} \pm rac{r^{2}}{R^{2}})} + r^{2}d\Omega^{2}.$$
 $R = \sqrt{rac{3|\Lambda|}{8\pi G_{N}}}.$

- ► That is, Localized excitation *decreases* entropy of dS. Entropy deficit is Boltzmann's law $\Delta S = -\frac{Mc}{2\pi\hbar R}$, at GH temp.
- Leads to asymptotic energy conservation law in Minkowski $(R \rightarrow \infty)$ limit.

Holographic Cosmology

▶ Principle that local excitations are constrained states of variables on the horizon, with a number of constraints ~ N = R/L_P ≪ N² has profound implications for early universe cosmology. Explains Boltzmann-Penrose question of why the universe began in a low entropy state.

Holographic Cosmology

- ▶ Principle that local excitations are constrained states of variables on the horizon, with a number of constraints ~ N = R/L_P ≪ N² has profound implications for early universe cosmology. Explains Boltzmann-Penrose question of why the universe began in a low entropy state.
- Leads to a finite, quantum mechanical theory of inflation, more constrained than QFT models, and with no conceptual ("trans-Planckian mode") problem.

Holographic Cosmology

- Principle that local excitations are constrained states of variables on the horizon, with a number of constraints ~ N = R/L_P ≪ N² has profound implications for early universe cosmology. Explains Boltzmann-Penrose question of why the universe began in a low entropy state.
- Leads to a finite, quantum mechanical theory of inflation, more constrained than QFT models, and with no conceptual ("trans-Planckian mode") problem.
- Holographic theory explains current data as well as QFT models, but gives different results for tensor (B mode) correlation functions. Unfortunately these are not yet measured and theory predicts them to be small.

Predictions for Terascale Physics

 Supersymmetry breaking originates from interactions with the horizon.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Predictions for Terascale Physics

 Supersymmetry breaking originates from interactions with the horizon.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Leads to
$$m_{3/2} \sim (M_U L_P)^{-1/4} \Lambda^{1/4}$$

Predictions for Terascale Physics

 Supersymmetry breaking originates from interactions with the horizon.

- Leads to $m_{3/2} \sim (M_U L_P)^{-1/4} \Lambda^{1/4}$
- Splitting in super multiplets $\sim \sqrt{m_{3/2}M_P} \sim a \text{ few TeV}$.

 The Explanation of Black Hole Entropy points the way to a general theory of Quantum Gravity

(ロ)、(型)、(E)、(E)、 E) の(の)

- The Explanation of Black Hole Entropy points the way to a general theory of Quantum Gravity
- Space-time is not a fluctuating quantum variable, but instead a representation of the hydrodynamics of the underlying quantum system.

- The Explanation of Black Hole Entropy points the way to a general theory of Quantum Gravity
- Space-time is not a fluctuating quantum variable, but instead a representation of the hydrodynamics of the underlying quantum system.
- Localized excitations are constrained low entropy states of that system.

- The Explanation of Black Hole Entropy points the way to a general theory of Quantum Gravity
- Space-time is not a fluctuating quantum variable, but instead a representation of the hydrodynamics of the underlying quantum system.
- Localized excitations are constrained low entropy states of that system.
- Implications for the early universe, tensor fluctuations in the CMB, as well as TeV scale physics and supersymmetry.