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QCD at finite density
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Ordinary nuclear matter: us ~ 940 MeV and T ~ OK.
Rest of the diagram virtually unknown.
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Beam Energy Scan and the QCD Critical Point

iffﬂjf[’,f;ﬁemem IEIEEERGIeeb  The Beam Energy Scan (BES) program at
RHIC was designed to look for the conjectured
QCD critical point.
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The collision energy of the heavy ions is to be
varied from the top RHIC energy of 200A-GeV

S down to about 5.5A-GeV.
/_
ECHEUEEE Superconductor

vicear \ The hadrons formed in a lower energy collision
L have a higher baryochemical potential s at
freezeout.

If a critical point exists, then the evolution of the fireball created in these collisions
should be qualitatively different in the first order region than in the crossover
region.
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The collision energy of the heavy ions is to be
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o
Superconductor

vicear \ The hadrons formed in a lower energy collision
L have a higher baryochemical potential s at
freezeout.

Critici | Point
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If a critical point exists, then the evolution of the fireball created in these collisions
should be qualitatively different in the first order region than in the crossover
region.

Need to validate any experimental observation from theory. Some theoretical
estimates place the critical point at ps/T ~ 1.5-2 while others place it much
higher.



Calculating at finite density

Interesting physics, but how to calculate?

* Models (PNJL, large-N¢, etc.): Possible to calculate the equation of state at
large densities e.g. for neutron stars. Also possible to sketch out putative
phase diagrams for physical as well as lighter-than-physical quark masses.
However, results will necessarily be qualitative or semi-quantitative.

e |attice QCD: Ab initio, but afflicted by the sign problem. Several partial
solutions known, but only two have been applied to large-scale QCD
simulations:

® I[maginary-y: No sign problem at imaginary p; however an analytic
continuation is required back to real p.

® Method of Taylor expansions: Straightforward definition. However very
expensive: Signal-to-noise ratio falls quickly with increasing order and
large volumes.
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Calculating with QCD-like theories: Some results
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Numerical approaches: Lattice QCD

e | attice QCD is a first-principles approach to QCD that consists of solving
QCD numerically in its difficult non-perturbative regime.

® Although very successful at T > 0 and ps = 0, it unfortunately suffers from the
infamous sign problem at ys not equal to 0.

® The sign problem occurs when the action becomes complex and the phase
can no longer be ignored. Instead of importance sampling i.e. a subset of
configurations contributing the most, all configurations now become equally
important and the final answer relies on a delicate cancellation of phases.

® No solution to the sign problem is known; however various partial solutions
exist of which two viz. analytic continuation and the method of Taylor
expansions, have been the most successful.



QCD at imaginary p

® There is no sign problem at imaginary p i.e. u = idi. Thus one can calculate
different observables at various values of iy and try to analytically continue

the results back to real p.

* |t must be kept in mind however that at high values of T, one has the
Roberge-Weiss (RW) first order transition at pi = 217T. At low temperatures,
there are no such restrictions on the allowed values of p..

® Another possible source of systematic error comes from the choice of
function used to perform the analytic continuation (polynomial, rational
function, etc.).

® |n practice however, good results have been obtained by this method, especially
for the quark number susceptibilities [M. D’Elia, G. Gagliardi and F. Sanfilippo, arXiv:
1611.08285], which we shall discuss next [See also Guenther et al. EPJ Web Conf. 137
(2017) 07008]. Similarly, there are also results for the curvature of the chiral phase
transition line [D’Elia et al. Wuppertal-Budapest, Cea et al. (2015)], which too are in good
agreement with results obtained from the Taylor method [Bielefeld-BNL 2009].



QCD at imaginary p
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® Quite good agreement with the Wuppertal-Budapest results, as also with the
old (p4) Bielefeld-BNL results.



The method of Taylor expansions

® The quark number susceptibilities (QANS) are the Taylor coefficients of the expansion
of the pressure i.e. logarithm of the partition function, w.r.t. the chemical potential p.
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® To calculate these on the lattice, it is necessary to take derivatives of the quark matrix

e.g.
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QCD at finite density

e These traces cannot be evaluated exactly, since M-' cannot be evaluated exactly.
They must be evaluated stochastically. In our case, we used ~1,500 random vectors
per configuration.

e After these traces are evaluated, they are put together in the necessary combination
to calculate the relevant QNS's e.q.

As =(Dg) + 6{DsD,) + 15(DD,) + 10(D3)
+ 15(DyD3) + 60(D:D,D,) + 15(D3)
+20(Ds D3y + 45(D3 D7) + 15(D, D7) + (D°).

Here As is the combination required to calculate xs. Care must be taken to evaluate
the squares, cubes, etc. in an unbiased manner. Once this is done for each
configuration, the QNS can be calculated by averaging over the ensemble.

® The signal-to-noise ratio drops quickly with increasing order. Need very high
statistics in order to get a decent result for the higher order susceptibilities.



Coupling the chemical potential p

e Straightforward coupling of p to the quark matrix leads to y4/a? divergences
[Hasenfratz & Karsch ‘84].

® Coupling y exponentially (so that it appears as part of the fourth component of
the vector potential) gets rid of these divergences. However now unlike in the
continuum, not only the first but all higher derivatives of the quark matrix are
also non-zero. The additional terms act like counterterms that serve to cancel

the divergence.

e Alternatively, one may couple u linearly but to the conserved current [Gavai &
Sharma (2010)]. Now divergences do arise and need to be subtracted. However
these only appear at 2" and 4" orders. Higher orders are still divergence free.

® Also, since | is coupled linearly, all derivatives except the first are zero.



Linear vs Exponential p

® Coupling p non-linearly gives rise to all possible derivative terms. The number of
terms rises rapidly with increasing order.

® For e.g. in the exponential formalism, at sixth order one has the following traces
Viz.
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Linear vs Exponential p

® Coupling p non-linearly gives rise to all possible derivative terms. The number of
terms rises rapidly with increasing order.

® By contrast, if g is coupled linearly, all terms with second and higher derivatives of
U are zero.
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Linear vs Exponential p

® Coupling p non-linearly gives rise to all possible derivative terms. The number of
terms rises rapidly with increasing order.

® By contrast, if g is coupled linearly, all terms with second and higher derivatives of
U are zero.
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Linear vs Exponential p
e Thus one only needs N matrix inversions at Nt" order. By comparison, in the
exponential case one needs around 20 matrix inversions at sixth order.

® Since matrix inversion is the most expensive part of the calculation, this results in
a huge gain at higher orders.
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QCD at finite density
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e \We calculated all the QNS (49 in all) up to sixth order, on lattices of size 6 — 16, in

the temperature range
20 and m| = ms/27.

[135 MeV, 280 MeV] and for two quark masses viz. mi = ms/

e Multiple lattice spacings allowed us to take the continuum limit in the 2"9 order case
while for the 4" and 6" order cases, our high-statistics results for N: = 6 & 8 allowed
us to calculate the continuum estimate.
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* \We used the exponential formalism to calculate 2" and 4" order QNS, and

the linear formalism from the 6t order onwards.

e Our measurements were carried out on 50-100,000 configurations for each

temperature, with up to 1,500 random sources on each configuration.



QNS and freezeout parameters
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Ratios of QNS can be related to ratios of
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comparison between lattice results and
expt. it is possible to extract a value (T,
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Strangeness neutrality and initial conditions in
heavy-ion collisions
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The initial conditions in a heavy-ion collision are i) ns = 0 (net strangeness zero),
and ii) na/ng = const. (fixed proton-to-neutron ratio).

These conditions imply that uq and us are nonzero whenever ug is. Using the
QNS, they can be determined order-by-order in pue.



Corrections to the pressure
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Lines of constant physics and the curvature of the
freeze-out line
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Lines of constant p, o or € are curves in the T-us plane. For small us, we can
parametrize: T(us) = To + Ko(uB/T)2 + Ka(us/T)* + ...

We determine K2 and K4 from our 2nd and 4th-order Taylor expansions. Ks is
smaller than k2> by an order of magnitude. Our current statistics do not permit an
accurate determination of Ke.



Lines of constant physics and the curvature of the
freeze-out line
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Phenomenologically, freeze-out has been conjectured to occur along such lines
of constant € or o [Cleymans and Redlich 1999].

For T between 145 and 165 MeV, 0.0064 <= k2P <= 0.0101 and 0.0087 <= K2t <=
0.012 [S. Sharma, QM2017]. This is in agreement with estimates for the curvature
of the line of the chiral transition temperature [BNL-Bielefeld 2010; BW 2012, 2015;
D’Elia et al. 2015; Cea et al. 2015].



Conclusions

e Unlike QCD at finite temperature, which by now has been fairly well-studied,
the study of QCD at finite density is only just beginning.

o | attice QCD, which works so well at finite T, unfortunately breaks down at p
not equal to O.

® Because of this, currently one has to rely on a combination of approaches,
each of which may apply to a different region of the phase diagram.

e | attice QCD itself may be extended to the region of high T and small p.
Although only a small region of the phase diagram, this is very important as
this is the region accessed in heavy-ion collisions.

® Here two approaches viz. imaginary gy and the method of Taylor expansions
have met with some success. Both are computationally intensive and work in
progress. Of these, the method of Taylor expansions has been successful in
providing a reliable equation of state down to beam energies of ~ 12 GeV. It is
hoped to extend this to cover the whole range of (T,u) studied both at RHIC as
well as at FAIR, NICA, J-PARC, etc. in the future.



