
In this talk I am going to describe a puzzling phenomenon we have know for about 
 30 years and only in the last few years we have began to understand their nature. 
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Gamma-ray Bursts 

Picture showing Vela launch using a Tital II-c rocket; the nuclear test  ban treaty was 
 signed in 1963. Insert at the top shows Vela at Strategic Air & Space Museum, Nebraska. 

(GRBs) 

!Colgate	
 (1968)	
 anticipated	
 GRBs	
 	
 
	
 	
 --	
 associated	
 with	
 breakout  of  
     relativistic shocks from the surfaces  
     of  SNe. 2 



The first important clue was discovered by the 
Compton Gamma-ray Observatory  

(launched in 1991)  

It established that the explosions are 
coming from random directions (isotropic) 
& have non-Euclidean space distribution. 
         And therefore very large distances →  3 



The next important CLUE came in 1997) 
(A Italian/Dutch satellite – Beppo/SAX – was launched in 96) 

It localized long-bursts to 5-arcmin (a factor ~20 improvement) 
Which led to the discovery of optical afterglow, and redshift. 
Thus, it was discovered that energy (isotropic) Eiso ~ 1053 erg. 

4 



   Stanek et al., 
   Chornock et al. 
   Eracleous et al., 
   Hjorth et al., 
   Kawabata et al. 

SN 1998bw: 
local, energetic, 
core-collapse 
Type Ic 

GRB 030329: z=0.17 
(afterglow-subtracted)‏ Emission lines 

 of CII, OII 
 and OIII 

Long-GRB – collapse of a massive star 
(Woosley and Paczynski) 

X-ray flash 020903 also seems to show a spectrum like 98bw  
at 25 days after the burst (Soderberg astro-ph/0502553). 

GRB 030329 
or SN2003dh 

5 
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v⊥ = β sinθ
1−β cosθ

θ ≈ 50   

Solid 
line: 
Spherical  
outflow 
in a 
uniform  
ISM; E52/
n0 =1 

Dashed 
line: jet 
model  
with tj =10 
days & 
 E52/n0 =20.  

Explosion speed 
(Taylor et al., 2004:  GRB 030329) 

v⊥=5c  

v⊥=3c  Γ≈7 
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Days After Burst 
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Life & Death of a Massive Star 

Gas & dust cloud 

   Main sequence star  
 (10 million years) 

Mass 
 loss 

Supergiant 

Type II 
supernova  

  Neutron star and 
supernova remnant 

Black hole &  
Accretion disk 
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Gehrels, Piro & Leonard: Scientific American, Dec 2002  

Interaction of the jet with the surrounding medium – GRB afterglow  
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The true amount of energy release in these explosions is  
determined by theoretical modeling of multiwavelength 
afterglow data, and is found to be ~1051 erg. 

The “Afterglow” radition is produced by the  
synchrotron process in external shock 

More energy comes out in these explosions in a few seconds 
than the Sun will produce in its 10 billion year lifetime! 

•

•
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The launch of Swift satellite –  
11/20/04 – was another major 
milestone in the study of GRBs 
 

INTEGRAL satellite – Oct 17, 2002 
launch – has discovered many GRBs 
and contributed much to our knowledge 
of these bursts. 
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Plateau in the X-ray  AG lightcurves, but no plateau in optical 
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0.3-10 kev LCs of some Swift bursts with flares 

(these bursts did not have redshift determination)‏ 
The big flare of 050502b, at 650s (peak), had slightly higher fluence than the main burst 
And delta T/T <<1.    050607 had a flare peaking at 310s, fluence during the flare was 

~ 15% of the burst fluence and delta T/T ~ 0.2. 

Because of smearing due to curvature dt/t ~ 1 in FS. Many of 
the flares have dt/t << 1 which suggests late time engine activity. 12 



Two interesting GRBs detected by Swift 

Naked Eye burst (080319B) z=0.93 
 7.5 Gega-ly; 5.8 mag for 30s 

GRB 090423: z=8.2, Eiso=1.2x1053erg 

movie made by Pi of the Sky, a Polish 
group that monitors transient events 

2.5 million times more luminous (optical) than  
the most luminous supernova ever recorded 

T = 5.5s, fluence=3.1x10-7 erg cm-2 (Ep=49 keV) 

Swift can see such GRBs even at z~15  

(similar to bursts at low z) 

Cucchiara et al. 2011 

GRB 090429B: z=9.4, Eiso=3.5x1052erg 

T = 10.2s, fluence=5.9x10-7 erg cm-2 

all 4 high-Z 
bursts have 
rest frame T90 
< 1s this might 
be due to the 
fact that Swift 
150keV band is 
> 1 MeV in 
burst rest 
frame and 
bursts are 
known to be 
narrower and 
highly variable 
in high energy 
bands. 
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Price et al. 
(2005) 
claim that 
8 out of 9 
Swift 
bursts (at 
z>1) could 
be 
detected 
at z=6.3 
and 3 of 
these 
could be 
detected 
at z~20. 

So Swift can detect bursts like these to z ~ 15, 
when the universe was 270 million years old. 

Swift/BAT sensitivity is 1.2x10-8erg cm-2s-1 

"#

Burst     z   tγ(s)  flux (erg cm-2 s-1)  Eiso(erg) 
050904       6.3   225   3x10-8      ~1054 

090423       8.2   10.2   6x10-8     1.2x1053 
090429B       9.4      5.5   5x10-8     3.5x1052 

SVOM: a Chinese-French mission (2017?) – more sensitive than 
Swift for GRBs with Epeak< 20 keV ( 4--250 keV band); 2 IR telescopes 
(0.4 to 0.95 µm – located in Mexico & China) to look for z~8 bursts.  

"# JANUS: funded for phase A study, but not selected for launch; x-ray (1-20 
keV) and IR telescope (0.7—1.7 µm) can determine GRB redsfit to z=12.  

BAT 

sensitivity,

15-150 kev, 

is 0.25 

photons 

cm-2 s-1  or 

1.2x10-8 erg 

cm-2 s-1  for  

fν ∝ ν-1/2)‏ 

080913       6.7       8   7x10-8           ~1053 

!The most distant quasar is at z=6.4 & galaxy at z~10.  

A GRB at z~9 
occurred when 
the universe 
was about 500 
Million Years 
old 
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Our understanding of GRBs has improved dramatically in last ~15 years. 

However, there are a number of fundamental questions that 
remain unanswered. The foremost amongst these are: 

1. Whether a BH or a NS is produced in these explosions? 
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• 

• 

magnetar blackhole 
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Black-hole vs. Magnetar & jet composition 

✫ 

✫ 

Swift found that the x-ray flux at the end of GRBs  
declines very rapidly –– t-3 or faster. 

The expected decline of luminosity for a magnetar is t-2 

Some GRBs have E > 1052 erg – more than expected of a magnetar. 

Work of Metzger et al. (2011) offers interesting suggestions 
regarding magnetars, but I see some problems...    
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Only a small fraction of core-collapse SNe result in GRBs (~1%) 
GRB rate is ~3% of  SNe  Ib/c, and ~10% of broad-line Ic SNe 

2. 

So GRB explosion is a rare channel – however, we 
have little information regarding GRB progenitor 
star’s special properties from observations. 

We don’t know whether relativistic jets in Blazars, micro-quasars, 
TDEs, and GRBs are magnetic outflows, baryonic, or e± .  

Recent work of Patrick Crumley et al. (2016) answers 
this question for a highly luminous TDE – which might 
apply to other relativistic jets as well.    

Two other basic unanswered questions about GRBs 

3. 
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central  engine	


relativistic  
outflow	


Central engine is completely hidden from our view so the progress that is being made is via numerical simulation of core collapse      

  Jet  energy  dissipation	

and  γ-­‐‑ray  generation	


External  shock  
radiation	


Progenitor star ⇐  jet  ⇐ γ-rays  

Size of the star is ~1011cm. However, the γ-rays are 
produced at a distance of ~1014—1016 cm , i.e. far 
away from the star.    

•
•

We have to rely on indirect means to 
understand progenitor star properties 

18 



6/11/2008 Fermi 
8 KeV to 300 GeV 

 

One of the goals for Fermi  
is to understand γ-ray burst  
prompt radiation mechanism 
by observing high energy  
photons from GRBs. 
 
 
However, there were surprises 
in store for us: 
 
  Fermi discovered that à  
 

How are γ-rays generated? 

19 



1.   >102MeV photons lag <10MeV photons (2-5s) 

2.   >100 MeV radiation lasts for ~103s whereas 
      emission below 10 MeV lasts for ~30s or less!  
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GRB 130427A (Perley et al. arXiv:1307.4401) 
MeV duration (T90) = 138s, LAT duration (TGeV) > 4.3x103s;  TGeV/T90 > 31 

 Highest energy photon (95 GeV) detected 242s after T0; z=0.34; Eγ,iso= 7.8x1053erg  
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Origin of  high energy photons in GRBs 

Prompt phase:  high energy photons during this phase might have 
 a separate origin than photons that  come afterwards if rapid 
 fluctuations and correlation with  MeV lightcurve is established.  
  

       Observers need to quantify the  statistical significance of this! 

Hadronic processes: proton synchrotron, photo-meson … 

Inefficient process – typically requires several order more 
energy than we see in the MeV band (unless Γ were to be small, 
of order a few hundred, which few people believe is the case for 
Fermi/LAT bursts), e.g. Razzaque et al. 2010, Crumley & 
Kumar 2013.  

Bottcher and Dermer, 1998; Totani, 1998; Aharonian, 2000; Mucke et al., 
2003; Reimer et al., 2004; Gupta and Zhang, 2007b; Asano et al., 2009; 
Fan and Piran, 2008; Razzaque et al. 2010; Asano and Meszaros, 2012; 
Crumley and Kumar, 2013…. 

Internal shock and SSC: e.g. Bosnjak et al. 2009, Daigne et al. 2011 

• 

• 
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Afterglow:  external shock synchrotron, IC in forward or reverse shock of 
 prompt radiation or afterglow photons; IC of CMB photons by e±  in 
 IGM;  pair enrichment of external medium and IC… 

Dermer et al., 2000; Zhang and Meszaros, 2001; Wang et al. 2001; 
Granot and Guetta, 2003; Gupta and Zhang, 2007b; Fan and Piran, 
2008; Zou et al., 2009; Meszaros and Rees 1994; Beloborodov 2005; Fan 
et al., 200; Dai and Lu 2002; Dai et al. 2002; Wang et al. 2004; Murase et 
al. 2009; Beloborodov 2013….    
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Kumar & Barniol Duran (2009) and Ghisellini, Ghirlanda & Nava 
(2010) showed that high energy γ-ray radiation from GRBs, after the 
prompt phase, are produced in the external-forward shock via the 
synchrotron process. The reasoning for this will be described in the 
next several slides. 

Gehrels, Piro & Leonard: Scientific American, Dec 2002  
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Flux above νc is independent of density and almost independent of  εB   

€ 

ρ ∝ r−sConsider GRB circumstellar medium density profile: 

Blast wave dynamics follows from energy conservation: 

€ 

Γ∝ r−(3−s) / 2

Observer frame elapsed time:  

€ 

tobs ≈ r
2cΓ 2 ∝ r4−s

Comoving magnetic field in shocked fluid: 

€ 

B'2∝εBρΓ
2

Synchrotron characteristic frequency:  

€ 

νm ∝ B'γm
2Γ∝εB

1/ 2tobs
−3 / 2

Observed flux at νm:   

€ 

fν m
∝εB

1/ 2r−s / 2

Synchrotron cooling frequency: 

€ 

ν c ∝εB
−3 / 2r(3s−4 )/ 2

Observed flux at ν: 

€ 

fν = fν m

ν m
ν c( )(p−1)/ 2 ν c

ν( )p / 2 ∝εB(p−2)/ 4tobs−(3p−2)/ 4

• 

• 

• 

• 

• 

• 

• 

. . . 
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The flux from the external shock above the cooling 
frequency is given by: 

Note that the flux does not depend on the external 
medium density or stratification, and has a very 
weak dependence on εB. 

0.2 mJy E55
(p+2)/4  εe

p-1 εB
(p-2)/4(1+z)(p+2)/4  

fν = 
dL28

2(t/10s)(3p-2)/4 ν8
p/2 (1+Y)  

_______________________________________ 

Y << 1 due to Klein-Nishina effect for electrons 
radiating 102 MeV photons. 
 

• 
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Table of expected and observed 100 MeV flux 

080916C 

090510 

090902B 

110731A 

130427A 

50 

9 

300 

8 

48 

67 

14 

220 

~5 

~40 

Expected flux♪  
from ES in nJy 

Observed flux  
         (nJy) 

Time (observer  
      frame in s) 

150 

100 

50 

100 

600 

4.3 

0.9 

1.8 

2.83 

0.34 

z 
8.8 

0.11 

3.6 

0.6 

0.78 

Eγ,54 _____________________________________________________________ 

♪We have taken energy in blast wave = 3Eγ, εe=0.2, p=2.4, εB=10-5     
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Abdo et al. 2009 
 

 
(GRB 080916C) 

Long lived lightcurve for >102MeV (Abdo et al. 2009) 
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Abdo et al. 2009, Greiner et al. 2009, Evans et al. 2009 
 

Long lived lightcurve for >102MeV (Abdo et al. 2009) 
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Or we can go in the reverse direction… 

Assuming that the late (>1day) X-ray and optical flux are from ES, 
calculate the expected flux at 100 MeV at early times 

X-ray 

Optical 

> 100MeV 

50 - 300keV 

Abdo et al. 2009, Greiner et al. 2009, Evans et al. 2009 
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Temporal decay index in Fermi/LAT band;  Ackermann et al. 2013  

The expected decline of the >100 MeV lightcurve 
according to the external shock model is t-(3p-2)/4. 
For p=2.2 the expected decline is t-1.1 which is in 
agreement with Fermi/LAT observations.  
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Nava et al. 2014  (MNRAS 443, 3578) 

According to the external shock model the LAT flux 
should be proportional to E(p+2)/4 εe

p-1 or  ~ (Eεe)   

(E is proportional to Eγ,iso and PIC simulations suggest εe~0.1-0.2)  

 t-(3p-2)/4 ≈ t-1.1 
 
(independent of n, ε ) B 
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Using only >100MeV Fermi data 
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How are Magnetic fields Generated in Shocks? 

Using late time x-ray, optical & radio data 
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Recent work has provided a surprising answer:   εB is consistent with 
shock compressed magnetic field of CSM of  ~ 10 µG or at best a modest 
amplification by factor ~10-102 (Kumar & Barniol Duran 2009) 

(A long standing open question) 
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This result suggests a weak magnetic dynamo in relativistic shocks 
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Beniamini, Nava, Barniol Duran & Piran (2015, 16) also find small 
value for εB based on the analysis of GeV & X-ray data for 10 GRBs. 
Larger energy in blast wave (>1052 erg)  and  efficiency for MeV ~ 15%.   
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This result suggests a weak magnetic dynamo in relativistic shocks 
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Magnetic field amplification factor (AF), for ISM 
density n = 1 proton cm-3, and magnetic field = 10µG 

AF  α  n0.2/Bism 35 



Acceleration of Electrons 

Can electrons be accelerated to Γγe~ 1011 when Bism~ 10µG? 

Electron Lorentz factor for 10 GeV synchrotron photon: 

Radiative energy loss a problem? 
synchrotron energy loss rate  * shock-crossing time < mec2γe 
 

ν =  
q γe

2 ΓB 
2π mec 

4ΓBism 
è Γγe= 1.5x1011 Bism,-5 

-½ 

me γe c2 
qB 

Larmor radius  
 Γ = = 2x1016 cm  Bism,-5 < R ≈1017cm -3/2 

∴  e-s are confined by  ~10µG field upstream & downstream 

è    hνmax < 50 GeV  Γ3 
The maximum photon energy might be ~ a few x 100 GeV  
when we consider a realistic situation of inhomogeneous B. 

•

•

•

(Barniol Duran & Kumar, 2010) 
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What about 10 GeV – 95 GeV photons 
detected from GRB 130427A (160509A)?  

Highest energy photon (95 GeV) was  detected 242s after 
the trigger (z=0.34, Eγ,iso= 7.8x1053erg) when Γ~ 102.  

Highest possible energy for synchrotron photons is when 

Could these be produced by the synchrotron process? 

electrons lose half their energy in one Larmor time 
(Because electrons gain energy by a factor ~2 in 
shock acceleration in ~ a few Larmor time)  

me γe c 
qB 

Larmor time =  
 

Synchrotron 
loss rate = σT B2 γe

2c 
6π 

Larmor time x  
 

Synchrotro 
loss rate <  meγe c2  

⇒ νmax =  
q γe

2 ΓB 
2π mec < 

9mec3 Γ 
16π q2 

= 50 Γ MeV 

★ 

★ 

★ 

< 10GeV ~ 
>10GeV photons might be due to IC in external shock, however, 
perhaps the above limit could be violated by inhomogeneous B.   37 



Generation of ~ 10 GeV to 95 GeV 
photons detected from GRB 130427A  
& GRB 160509A (29 & 52 GeV at t0 + 
77s) is unclear; it might be due to SSC 
process in the external shock.  

And a bigger unsolved problem is the 
uncertain mechanism for the generation 
of ~MeV photons during the prompt 
GRB phase.  
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Polarization measurements (prompt phase) 

RHESII (GRB 021206)       80 ± 20%            [disputed] 

INTEGRAL (041219A)      63 ± 30%     [2.8 σ; Mcglynn et al. 2007] 

IKROS-GAP (100826A)     27 ± 11%  [2.8 σ; Yonetoku et al. 2011] 
[110301A (70 ± 22%) , 110721A (84 ± 28%)]  

Polarization during afterglow phase (optical) 

polarization 

Very nice work has been done by Mundell et al. (RINGO-team). They have 
firm measurements of optical polarization in early afterglow of several GRBs: 

090102 – at ~ 160s  (RS) – Π = 10 ± 1% (Mundell et al. 2009) 
091208B  – 150-700s (FS) – Π = 10.4 ± 2.5% (Uehara et al. 2009) 
120308A  – 150-700s (RSàFS) – Π ê with time (Mundell et al. 2012) 
121024A – 0.15 day – 4% linear & 0.6% circular! (Wiersema et al. 2014) 
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AstroSat might be able to answer the 
long unsolved question of prompt MeV 
radiation mechanism (via polarization 
measurement). Sept 27, 2015 
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Summary 
We have learned many things about GRBs in the last 10 years: 

Produced in core collapse (long-GRB) & binary mergers (short-GRB) 

Highly relativistic jet (Γ ≥ 102), beamed (θj ~ 50), Ej ~ 1051 erg 

They do occur at high redshifts (current record z=9.4) 

High energy photons (>100 MeV) are produced in external shock 

Generation of magnetic fields in relativistic shocks is clarified 

But we don’t yet have answers to several basic questions: 
Are blackholes produced in these explosions (or a NS)? 

What is the GRB-jet made of? 
How are gamma-rays of ~MeV energy produced? 

✫ 

✫ 
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Future Prospects 

Fermi, Swift, INTEGRAL & Astrosat will continue to provide excellent data. 

JANUS – proposed small explorer – will have 1-20 keV & near-IR 
                 telescopes spot  high-Z  GRBs. 

ALMA  (Atacama Large Millimeter Array) – 90-950 GHz with ~102 times the 
              sensitivity of VLA – will be powerful tool for afterglow observations. 

CTA, MAGIC, HESS & VERITAS (air Cerenkov telescopes) would be looking 
           for TeV and higher energy photons. 

IceCube has been looking for high-energy neutrinos from GRBs with 
           energy between ~ 30  TeV and  10 PeV (also ANTARES) 

Gravitational waves:  advanced-LIGO should detect short-GRBs 
    

✫ 

✫ 

✫ 

✫ 

✫ 

✫ 

SVOM – a French-Chinese mission (2021?)  will have γ-ray, x-ray, optical 
& IR telescopes and slew in < 60s –  good for  high-z GRB study. 

✫ 
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