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Outline

● Topological concepts in condensed matter

● Z2 topological insulators

● Topological crystalline insulators (TCIs)

● Electron correlations (parquet RG analysis)

● Possible instabilities



  

What is topology?

Loose definition:
A mathematical concept dealing with properties that remain
unchanged under smooth, local deformations.

A donut and a teacup have the same number of “handles” or
topology.



  

Examples of topological structures

Screw dislocation 
in a wall.

First image of Abrikosov vortex 
lattice in superconductor, 1967.
Phase of the Cooper-pair wave 
function rotates by 2πn as one 
circles a vortex. Continuity then 
requires the vorticity n to be an 
integer. 

Skyrmions in 2D magnetic semiconductor
GaV
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Quantum Hall effect

RH=
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From quantum mechanics of particle
In magnetic field:

Hall Resistance:
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(Hall insulator)



  

Berry phase

Consider a time-independent Hamiltonian that has some dependence
on a parameter. Schrödinger eq. for ground state is 

H (ξ)| Ψ0(ξ)>=E0(ξ) |Ψ0(ξ)>

Define phase difference between the eigenstates at two different
parameter values:

exp [−iΔϕ12]=
<Φ0(ξ1) |Φ0(ξ2)>

|<Φ0(ξ1) |Φ0(ξ2)>|
⇒Δϕ12=−Im ln (<Φ0(ξ1)|Φ0(ξ2)>)

Berry phase is the total phase accumulated over a closed path
in parameter space:

γ=Δ ϕ12+Δϕ23+…+Δ ϕN ,1



  

Berry connection and curvature

γ=∮
C

A(ξ )⋅d ξ

A(ξ )=−Im <Ψ0(ξ ) |∇ ξ Ψ0 (ξ )>

The continuous form looks nicer and allows us to introduce a 
fictitious vector potential, the Berry connection:

The line integral is identified as a flux enclosed by closed path C. 
Similarly to electromagnetism, using “Stokes' theorem”, we identify
a fictitious magnetic field, the Berry curvature: 

Ωαβ=−2 Im <∂α Ψ0(ξ) |∂β Ψ0(ξ)>

If C is a curve on a closed surface, then the Berry phase is not 
uniquely determined since C could be the boundary of two possible
surfaces now. However, the difference is 2 and unique. 



  

The Chern number in a crystal

Instead of the polar and azimuthal angles of the last example, the 
corresponding parameter is now the momentum. In 2D, for example,

This is the so-called first Chern number, and is an integer.



  

Quantum Hall effect, topological band theory

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. Den Nijs
Quantized Hall conductance in a two-dimensional periodic potential.
Physical Review Letters, 49(6):405, 1982.

 Using linear response theory, TKNN showed σ xy=
e2

h
C1

If the Chern number is zero, then we are looking at a normal band 
insulator. 

If nonzero, then the bandstructure has nontrivial topology
- this is a Chern insulator. TKNN showed that by using the actual
Landau level wavefunctions, the Chern number is one for each
occupied Landau level. 

The Chern insulator thus has a finite and quantized Hall resistance.

The great importance of the Thouless et al. result is that it opens up 
the possibility of having a Hall conductance quantization even in the 
absence of time-reversal symmetry breaking.



  

Hall quantization without Landau levels
F.D.M. Haldane
Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter 
Realization of the "Parity Anomaly". 
Physical Review Letters, 61(18):2015, 1988. 

Haldane constructed a simple (graphene) lattice model with 
nearest and next-nearest neighbour hopping. Model had broken
time-reversal symmetry but zero total magnetic field per hexagon.

No Landau levels. However 
the two-component Bloch states 
|u(k)> have a structure similar to 
the textbook example of a spin-1/2 
particle in a rotating magnetic 
field.   

Experimental evidence of a Chern
Insulator (Bi,Sb)

2
Te

3
, Cui-Zu Chang et al.,

Science, 340(6129):167–170, 2013.



  

Z
2
 Topological Insulators

C. L. Kane and E. J. Mele, PRL (2005), ibid. (2007)
R. Roy, PRB (2009)

Consider two “time-reversed” copies of Haldane-type Chern
insulator. Total Chern number is zero, i.e. C

 1
 + C

2
 = 0.

But this could mean either both are zero, or their difference
is ±2. If the difference is nonzero, the insulator is topologically 
nontrivial.
 
Idea may be extended to 3 dimensions.



  

Topological crystalline insulators

Low energy surface states topologically protected by 
crystalline symmetry instead of (usual) time reversal 
symmetry [Fu, PRL (2011)].

Proposed material realization: SnTe
[Hsieh et al., Nature Comm. (2012)]  

Bandgap at L-points
Inverted wrt PbTe.
[Dimmock et al., PRL (1966)]



  

SnTe as a TCI

Neither PbTe or SnTe
are conventional Z2
topological insulators.

Crystal momenta in ΓL
1
L

2
 are invariant under mirror reflections

about (110) plane in real space. Bloch states on this plane can be
thus labelled by the eigenvalues ± ι of this mirror
reflection operation M, and associated Chern number n

± ι.

Bandstructure calculations show that the mirror Chern number
(nι-n -ι)/2 is a nonzero integer for SnTe but zero for PbTe. 
[Hsieh et al., Nature Comm. (2012)]



  

Excitations near the L points
Mitchell & Wallis, Phys. Rev. (1966)

k
3
 along ΓL, k

1 
along [110] direction. 

Eigenvectors of Pauli matrix σ
z
 denote p-orbital on cation 

Pb/Sn (1,0) or anion Te (0,1). 

Pauli matrix s
3
 denotes angular momentum of electron along

ΓL direction. 

Positive m means conduction band at L derived from
cation. Reflection about (110) plane denoted by M = -s

1
.



  

... Excitations near the L points

Consider Hamiltonian on mirror invariant plane k
1 
= 0. 

(Massive Dirac fermion)

As Sn doping increases, the sign of the mass flips at some
value of doping. Chern number changes by ±1. Same thing
happens at both L1 and L2 point -> Chern number changes
by ±2. 

Thus either PbTe or SnTe is topologically nontrivial.
Bandstructure calculation shows SnTe is topologically
nontrivial. [Hsieh et al., Nature Comm. (2012)]



  

Effective Hamiltonian at (001) surface

On (001) surface, pairs of L points get
projected to a single X point. 

Low-energy effective Hamiltonian
[Liu et al., PRB(R) (2013)]: 

Here τ  - Pauli matrix in valley (L) space.
and s refers to spin space. 



  

Bandstructure near X point

[Liu et al., PRB(R) (2013)]

Four bands, the ones 
closest to E=0
feature Dirac points (Λ

1,2
)

not invariant under
time reversal.

Dirac points separated by
a pair of 2D Van Hove
singularities (S

1,2
).



  

Observation of surface states
In the topological crystalline
Insulator in Pb-SnTe alloy.
[Z. Hasan group, Nature Comm. (2012)]



  

Electronic instabilities

Essentially spinless bands!

Enhanced DoS at (low-lying!) Van Hove points -> possibility
of electronic instabilities if Fermi energy can be tuned to their
vicinity through small chainges in doping, pressure etc.

Particularly interested in instabilities from weak repulsive 
electron interactions. [E.g. Furukawa & Rice, PRL (1998) for 
d-wave order in cuprates and Nandkishore et al., Nat. Phys. (2012) 
for chiral d-wave superconductivity in graphene]

Advantage wrt. e.g. graphene [Nandkishore et al., Nat. Phys. (2012)]
where 2D Van Hove singularities appear at M points – large
doping needed for graphene unlike SnTe. 



  

Experimental evidence
for superconductivity
in a Pd-Sn-Te alloy.

[G. Sheet group, APL (2016)]



  

Model

Sum over patch
index α and spin
indices γ.

We project the electron fields to the band(s) closest to the 
chemical potential. Interested in chemical potential in the 
vicinity of Van Hove singularities (i.e. lowest lying bands). 

Particularly interested in instabilities arising from weak
repulsive interactions:

Multiorbital system: must 
Allow Hund’s splitting of
Interactions.



  

...model

Interactions considered subject to conservation of spin
and crystal momentum. The two electron pockets are
approximately nested.



  

Nontrivial Berry phases

Wavefunctions are four-component spinors. Original electron
fields projected to any single wavefunction (say band 1) end up
having nontrivial momentum dependences (Berry phases): 

uaσ(k)=⟨k ,1|ψaσ (k )⟩

Arg [u1↑(k) ]∼eiθ k Arg [u1↓(k) ]

Accordingly, interactions projected to the band also acquire
nontrivial Berry phases -> possibility of unconventional electronic
order even from momentum independent interactions of the original
fermions! 



  

Parquet analysis

Presence of 2D Van Hove singularities and near-nesting 
conditions make bare susceptibilities in the particle-particle (pp)
channel at zero momentum and particle-hole (ph) channel at 
the nesting vector doubly logarithmically divergent
upon decreasing the energy scale.

Low energy properties therefore require consideration of 
competing pp and ph channels. This is the essence of the
Parquet approximation.



  

... parquet analysis to one loop



  

... solution of parquet equations

If initial values of couplings are
spin-degenerate, the RG flows to
spin-degenerate fixed points.
Strongest divergence is seen in
Pair-hopping (h

3
) and intra-patch 

Coulomb (h
4
).

If spin-antiparallel interaction
starts out earlier, then only
the l=1 couplings diverge.

Solutions much more 
sensitive to Hund’s splitting than 
channel splitting.



  

Electronic phase competition, susceptibilities

To study susceptibilities of
different orders, we introduce 
test vertices and consider their
renormalization.

E.g. for Cooper pairing on the
patch, the order parameters
obey



  

Susceptibilities, exponents

Susceptibilities evolve as χ∼( y c− y )α

The winner (if one exists) is chiral p-wave superconnductivity,
which arises from nontrivial Berry phases of the wavefunctions.
Translated to original valley-spin basis, the p-wave order is
Independent of momentum – hence robust against weak disorder!



  

Summary

1) Surface states of Pb-doped SnTe are susceptible to electronic
 instabilities driven by repulsive electron innteractions.

2) Instabilities very sensitive to exchange splitting of interactions.
 For dominant antiparallel-spin interactions a chiral p-wave FFLO
 state is the dominant order. For dominant parallel-spin interaction,
 there is no phase transition within parquet.

3) Chiral p-wave superconductivity arises from nontrivial Berry
 phases of the surface states, this affords protection against weak
 potential disorder. Pb-doped SnTe is thus a good candidate to
 explore chiral p-wave FFLO phases.
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