

CMS-PHO-OREACH-2009-001

Search for exotic new physics in CMS

Swagata Mukherjee (RWTH Aachen University, Germany)

20th November, 2017 **TIFR, Mumbai, India**

SPONSORED BY THE

Federal Ministry of Education and Research

Introduction

- LHC is delivering (primarily) p-p collision data since 2010
- Increase in center-of-mass energy in run-II significantly extends reach of run-I
 - Higgs production(ggH): 19.3 pb \rightarrow 43.9 pb (x2.3)
- Experimentally more challenging
 - Increased instantaneous luminosity
 - Increased overlapping p-p collisions (pile-up)
 - Increased event rate

Lessons from Run-I

- There is a Higgs boson
 - It is standard model like
 - An obvious lamp-post to look under
 - In run-II, perform precision measurements of the Higgs properties
 - example: measure Higgs differential cross-sections
- No clear indication of new physics
 - In run-II, search in as many final states as possible, covering large range of masses
- Excellent understanding of
 - Detector/ Reconstruction/ Calibration
 - Standard Model physics

Higgs differential cross section in yy channel

- Small branching (≈ 10⁻³) but very clean channel
- Good mass resolution (1-2% at 125 GeV)
- Direct test of perturbative QCD calculations in the Higgs sector
- Good agreement with QCD predictions within uncertainty
- Statistical uncertainty still dominant over systematics
- No hint yet of extra contributions from new processes

Many other Higgs analyses performed...

Precision measurement

•Width

- •Signal strength (μ_i^{f}) in different production and decay modes
- •Coupling modifiers (K)
- •Spin, Parity

 $\mu_i^f \equiv \frac{\sigma_i \cdot BR^f}{(\sigma_i \cdot BR^f)_{SM}} = \mu_i \times \mu^f$

Searches

- •rare decays of Higgs
 - •LFV channels, di-muon, di-electron etc..
 - •di-Higgs in different final states

no hint of new physics

Searches for New Physics in Bump-Hunt technique

Electrons in CMS

- Electrons deposits energy in ECAL
 - Homogeneous, compact, high transverse granularity
- Pixel and silicon-strip tracker to reconstruct electron tracks
- Bremsstrahlung radiation due to tracker material in front of ECAL
- Search for the highest ET crystal
- \bullet Narrow η larger ϕ window around the seed
- Superclusters built collecting all the crystals in the road
- Information from HCAL also useful for electron/ jet discrimination. Electrons deposit most of their energy in the ECAL→ E_{HCAL}/E_{ECAL} small

 $\sigma(E)/E \sim 2\%$ for 50 GeV electron

Monday, 20 November 17

scintillating crystal (~26 X₀)

Light detector (VPT or APD)

PbWO4

Muons in CMS

• Redundant muon measurement

Muon system

- Drift Tubes (DT) in central barrel
- Cathode Strip Chambers (CSC) in endcap
- Resistive Plate Chambers (RPC) in barrel and endcap

Inner tracker

- 3 muon reconstruction algorithms
 - standalone muon: reconstructed in muon system only Important for long-lived searches
 - global muon: outside-in (standalone muon to inner track)
 - tracker muon: inside-out (inner track to muon detector)

Muon momentum resolution 2-10%

$X \rightarrow e \mu$ Lepton Flavor Violating (LFV) decay

13 TeV 2.7 fb⁻¹

Why is LFV important?

- Neutral Lepton Flavour Violation (LFV) observed → neutrino oscillation
- Charged LFV not observed
- Example µ→e¥
- Branching Ratio from known physics
 ~O(10⁻⁵⁴)
- Can be enhanced in presence of New Physics
- Many extensions of SM with new states at TeV scale generates charged LFV
- Strong limit from indirect searches in some cases.
- Can be degraded by cancellation of LFV effects from other new physics.
- Direct search is complementary to limits obtained from searches at lower energies.

LFV in R-Parity Violating (RPV) SUSY

In SUSY, most generic super-potential allows terms like this $W_{\Delta L=1} = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{e}_k + \lambda'_{ijk} L_i Q_j \bar{d}_k + \mu'_i L_i H_u$ $LLE \qquad LQD$

 λ and λ ' terms violate lepton number (and also lepton flavor)

B > baryon num.
L > lepton num.R-parity (R) = $(-1)^{3B+L+2s}$ B > baryon num.
L > lepton num.
s > particle spinR=(+1) for SM, R=(-1) for SUSY particless > particle spinR-Parity Conserving SUSY: Proton always stableIf only L (or B) is violated, then the proton would be still stable!

In RPV SUSY, the Lightest SUSY Particle (LSP) is unstable \rightarrow low MET in event

X→eµ

13 TeV 2.7 fb⁻¹

13 TeV 2.7 fb⁻¹

X→eµ

Quantum Blackhole (QBH)

- ★ Extra dimension(s) → Fundamental
 Planck scale lowered to TeV region
 (M_P~I TeV)
- * QBH produced if $\sqrt{s} > M_P$
- Spin-0, colorless, charge-neutral
 QBH
- Cross section depends on threshold mass for QBH production (M_{th}=M_P) and number of extra dimensions (n)
- n=1 : Randall-Sundrum (RS) model
- n=4,5,6 : Arkani-Hamed-Dimopoulos-Dvali (ADD) model

QBH generator by Douglas M. Gingrich <u>arxiv 0911.5370</u>

Number of				
extra dimensions	M _{th}			
n=1 (RS)	2.5 TeV			
n = 4 (ADD)	4.2 TeV			
n = 5 (ADD)	4.3 TeV			
n = 6 (ADD)	4.5 TeV			

Electric charge, QCD color, spin conserved

$X \rightarrow e/\mu/\tau_{had} + MET$

Experimental Signature

- * High-p_T, isolated $e/\mu/\tau_{had}$
- Missing Transverse Energy (MET)

Back-to-back: $\Delta \Phi(\ell, MET)$ high Balanced in pt: pt(ℓ)/MET close to 1

τ_{had} and MET are

experimentally challenging

Uses information from full

detector (Particle-flow)

•HCAL is important

Event display of the highest $M_T \tau$ +MET event Data recorded: Oct. 9, 2015 $pT(\tau)$: 509 GeV, MET : 540 GeV

CMS HCAL

- Hadronic showers more complex.
 Need more material to contain them.
- •Homogeneous calorimeter not possible.
- Brass(passive absorber) / Plastic scintillator(active) sampling calorimeter
- •Hadronic shower has EM component from $\pi^0 \rightarrow \gamma \gamma$
- Resolution is best if the HCAL has similar energy response to electrons as charged pions (e/h~1).
- But generally e/h>I (CMS case)

 $\sigma(E)/E \sim 18\%$ for 50 GeV $\pi^{+/-}$

Hadronic taus in CMS

MET in CMS

Particle escaping the detector undetected gives rise to MET \rightarrow imbalance in p_T of all reconstructed particles in an event

- Well understood MET important for many new physics searches
- Many sources of fake MET
 - Dead / hot calorimeter cells
 - Jet whose hardest hadron enters a crack in the calorimeter
 - "beam halo"
 - Cosmic muon
- Apply clean up cuts to remove fake high MET events

MET well understood in CMS data

$X \rightarrow e/\mu/\tau_{had} + MET$

Experimental Signature

- * High-pT, isolated e/ μ/τ_{had} and MET
- * Back-to-back \rightarrow Cut on $\Delta \Phi(\ell, MET)$
- * Balanced in $p_T \rightarrow Cut$ on $p_T(\ell)/MET$

Background

2.3 fb⁻¹

2015 data

* Dominant

* $W \rightarrow \ell + v$ (irreducible)

* Other

- Top production
- * Drell-Yan

* Diboson

Real Leptons

* QCD (e and τ channel) Jet faking lepton Data-driven

W' $\rightarrow e/\mu/\tau_{had} + MET$

Theoretical Interpretation

- Sequential Standard Model (SSM) predicts new massive boson W'
- Same couplings as SMW boson, but decays to bosons (W, Z, H) assumed to be suppressed
- * W' \rightarrow tb allowed if W' sufficiently massive

No interference with SMW boson

2015 data

2.3 fb⁻¹

W' $\rightarrow \tau_{had}$ +MET: Enhanced coupling to 3rd generation

- W' $\rightarrow \tau_{had}$ +MET search allows to test models with enhanced coupling to 3rd generation
- Light SU(2)_I (couples to 1st and 2nd generation) and a heavy SU(2)_h (couples to 3rd generation) \rightarrow mixing angle θ_E
- SM-like $SU(2)_W$ and extended group $SU(2)_E \text{ exist} \rightarrow SU(2)_E$ gives rise to W'

Searches in many other channels

Where is new physics hiding? (1)

- Many searches can't probe low / intermediate masses because of trigger threshold
- One prime example is di-jet resonance search
- Search starts from ~1.2 TeV (using nominal triggers)

Why trigger threshold is an issue in LHC ?

Why trigger threshold is an issue in LHC ?

- At instantaneous luminosity of
 I.2XI0³⁴ cm⁻²s⁻¹, LHC produces
 ~I billion p-p collisions per second
- To save all these collision events, CMS would need to read, process, transfer, and store, tens of TB per second
- Do we even need such large amount of data ?
- Interesting processes are much rarer than the p-p scattering !
- Filter out un-interesting events
 TRIGGER !
- End up selecting events with high-pT objects

A detour to CMS trigger system

- LHC collide proton bunches each 25 ns, with rate up to 40 MHz
- CMS experiment uses a two-level trigger system to reduce the data volume
- Level I (LI) Trigger
 - hardware-based, fast read-out of detector with coarse granularity.
 - 40 MHz \rightarrow LI \rightarrow I00 kHz.
 - Only simplified event information available (no tracker information).
- High Level Trigger (HLT)
 - Software-based (CMS software written in C++), full readout of detector with full granularity
 - 100 kHz \rightarrow HLT \rightarrow 1 kHz.
- Events accepted by HLT are transferred to Tier-0, reconstructed offline (prompt RECO) and stored world-wide.
 - Performance of HLT quite close to the offline reconstruction
 - Similar algorithms and calibrations, optimized for speed

🕹 40 MHz

100 kHz

reconstruction

HLT

Can we still probe low mass di-jet resonances ?

YES. In two ways:

- Require a high p_T ISR jet or photon, which helps to surpass trigger threshold
 - Most sensitive in low masses
 - 50-250 GeV (ISR+merged di-jet)
 - 250-600 GeV (ISR+resolved di-jet)

• Data scouting: new paradigm in trigger

- Most sensitive in intermediate masses
 - 600 GeV-1.6 TeV

The actual limitation...

We are limited by

Trigger Bandwidth = Event Rate × Event Size ~I kHz × ~I MB

 \approx I GB/sec

✓ Offline reconstruction

This is the idea of data scouting

For di-jet, dropping everything else except calo-jet, MET, primary vertex allows to go from HT=900 GeV to HT=250 GeV at the HLT level

- In data scouting, we reconstruct at HLT level, all physics objects needed for an offline analysis
- After a loose trigger selection, the HLT objects are saved directly for offline use
- The events are not sent to prompt RECO, and no RAW data is saved

dijet search: nominal and scouting

Di-jet limits

Going beyond dijet: di-muon scouting

- Until now, di-jet analysis is the only (public) application of scouting in CMS
- However, CMS has put major efforts in di-muon scouting recently
- With nominal triggers, CMS covers ~10 GeV-4.5 TeV di-muon masses
- Masses below 10 GeV not probed, no suitable trigger available
 - B-physics group has triggers focussing on low mass resonances, not useful for searches

Theoretical Motivation of di-muon scouting

- Many dark matter models introduce new 'dark' sector
- Dark sector may contain new particles that do not couple directly to SM, but there are "portals" between dark sector and SM.
- Dark sectors with extra U(I), kinetic mixing with SM U(I), mixing strength €
- Dark photons (A') are the corresponding U(I) gauge bosons, mediating this dark force.
- Dark-photon phenomenology explained in <u>arxiv1603.08926</u> by P. Ilten, Y.
 Soreq, J. Thaler, M. Williams, W. Xue

Previous searches of $A' \rightarrow \mu \mu$

LHCb collaboration arxiv1710.02867 (Oct 2017)

Energy frontier capabilities are unique and complementary to those at Intensity frontiers

- CMS dark-photon search in di-muon channel: work-in-progress
- Expect similar or better sensitivity than LHCb
- Dedicated di-muon scouting trigger designed for prompt and displaced di-muon search, and placed online
- Aim for 2018 summer conference

Where is new physics hiding? (II)

(I) Low mass(II) Long-lived signatures

- Easy to miss unless dedicated effort is made
 - Striking signatures in detector
 - Often need special trigger

<u>One (exotic) example</u>

Longlived searches in CMS

Null results so far. More long-lived searches planned.

What's Next ?

- Wide program for new physics search in CMS.
 - Stringent limits on BSM scenarios
 - Development / extensive use of novel techniques
 - No hint of new particles until now

But, LHC has particle physics program until ~2040

Current amount of data is only a small part of full LHC data expected

Extra Slides

Figure 1: Examples of leading-order Feynman diagrams for Higgs boson production via the (a) *gg*F and (b) VBF production processes.

Figure 2: Examples of leading-order Feynman diagrams for Higgs boson production via the (a) $qq \rightarrow VH$ and (b, c) $gg \rightarrow ZH$ production processes.

Figure 3: Examples of leading-order Feynman diagrams for Higgs boson production via the $qq/gg \rightarrow ttH$ and $qq/gg \rightarrow bbH$ processes.

Figure 4: Examples of leading-order Feynman diagrams for Higgs boson production in association with a single top quark via the (a, b) tHq and (c, d) tHW production processes.

differential cross section H to 41

LHC Higgs Cross Section Working Group arXiv:1610.07922

 $\sigma = 48.58 \, \text{pb}_{-3.27 \, \text{pb} \, (-6.72\%)}^{+2.22 \, \text{pb} \, (+4.56\%)} \, \text{(theory)} \pm 1.56 \, \text{pb} \, (3.20\%) \, \text{(PDF+}\alpha_s) \, .$

Monday, 20 November 17

Precision on signal strength

L (fb^{-1})	$\gamma\gamma$	WW	ZZ	bb	ττ	$Z\gamma$	μμ	inv.
300	[6, 12]	[6, 11]	[7, 11]	[11, 14]	[8, 14]	[62, 62]	[40,42]	[17, 28]
3000	[4, 8]	[4, 7]	[4,7]	[5,7]	[5, 8]	[20, 24]	[20,24]	[6, 17]

Precision on coupling modifier (K)

$L (fb^{-1})$	κ_{γ}	κ_W	κ _Z	ĸg	κ _b	ĸ _t	$\kappa_{ au}$	$\kappa_{Z\gamma}$	$\kappa_{\mu\mu}$	BR _{SM}
300	[5,7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]	[14, 18]
3000	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[8, 8]	[7, 11]

Projection: New Physics

Rediscovery of Higgs with 2016 data

Di-Higgs

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$
Posterior
$$P(n|s+b) = P(A|b)P(b)$$

B is the theory A is the measurement

$$=\frac{e^{-(s+b)}(s+b)^n}{n!}$$

$$egin{aligned} p(\mathcal{H}|x) &= rac{\mathcal{L}(x|\mathcal{H}) imes \pi(\mathcal{H})}{\int \mathcal{L}(x|\mathcal{H}')\pi(\mathcal{H}')d\mathcal{H}'}, \ p(heta,
u|x) &= rac{\mathcal{L}(x| heta) imes \pi(heta) imes \pi(
u)}{\int \mathcal{L}(x| heta')\pi(heta') imes \pi(
u')d heta'}. \ p(heta|x) &= rac{\int \mathcal{L}(x| heta) imes \pi(heta) imes \pi(
u')d
u'}{\int \int \mathcal{L}(x| heta')\pi(heta') imes \pi(
u')d heta'd
u'}. \ 1-lpha &= \int \limits_{ heta_{ ext{down}}} p(heta|x)d heta \end{aligned}$$

From LHC to HL-LHC

~8x more pileup

Radiation six times higher than nominal LHC design

Replace detector components that suffer from radiation damage Tracker and forward region with highest radiation

CMS Phase-2 Detector Upgrades

Tracker

- Radiation tolerant high granularity less material
- Tracks in hardware trigger (L1)
- Coverage up to $\eta \sim 4$

Muons

- Complete coverage in forward region (new GEM/RPC technology) |η|>1.6
- Investigate muon-tagging up to η ~2.8
- New RPC link-boards with ~1 ns timing

Trigger

- L1 with tracks & up to 750 kHz
 - Latency ≥ 12.5µs

Basic goal maintain (possibly enhance) the excellent performance of the CMS detector in the

harsher conditions

Endcap Calorimeters

- Radiation tolerant higher gran
- Study coverage up to $\eta \sim 3$
- Investigate fast-timing

Barrel ECAL

Replace FE electronics

Concluding Remarks

LHC permits exploration of the "energy frontier" Discovery of new physics did not happen till now But we are just getting started

